# Unconstrained Optimization 

## Copyright ©Mathwrist LLC 2023

January 1, 2023

## General Smooth Function $\psi(\mathbf{x})$

- Iterative methods to generate an improved sequence $\left\{\mathbf{x}_{k}\right\}$ converging to solution $\mathbf{x}^{*}$
- Each step, objective funtion approximated by Taylor expansion

$$
\psi\left(\mathbf{x}_{k}+\Delta \mathbf{x}\right) \approx \psi\left(\mathbf{x}_{k}\right)+\mathbf{g}^{T}\left(\mathbf{x}_{k}\right) \Delta \mathbf{x}+\frac{1}{2} \Delta \mathbf{x}^{T} \mathbf{H}\left(\mathbf{x}_{k}\right) \Delta \mathbf{x}
$$

step reduction

$$
\Delta \psi\left(\mathbf{x}_{k}\right) \approx \mathbf{g}^{T}\left(\mathbf{x}_{k}\right) \Delta \mathbf{x}+\frac{1}{2} \Delta \mathbf{x}^{T} \mathbf{H}\left(\mathbf{x}_{k}\right) \Delta \mathbf{x}
$$

- Gradient $\mathbf{g}\left(\mathbf{x}_{k}\right)$ is always required.
- Hessian $\mathbf{H}(\cdot)$, depends on the choice of methods.
- $\mathbf{x}^{*}$ satisfies stationary condition $\left\|\mathbf{g}\left(\mathbf{x}^{*}\right)\right\|=0$ and curvature condition $\mathbf{H}\left(\mathbf{x}^{*}\right)$ being at least positive semidefinite.


## Line Search Methods

## Step Length

- $\Delta x=\alpha \mathbf{p}$ for step length $\alpha$ and direction $\mathbf{p}$
- acceptable $\alpha$ : not undershooting, not overshooting.
- Wolfe conditions:

$$
\begin{array}{r}
\psi\left(\mathbf{x}^{k}+\alpha \mathbf{p}\right) \leq \psi\left(\mathbf{x}^{k}\right)+c_{1} \alpha \mathbf{g}\left(\mathbf{x}^{k}\right)^{T} \mathbf{p} \\
\mathbf{g}\left(\mathbf{x}^{k}+\alpha \mathbf{p}\right)^{T} \mathbf{p} \geq c_{2} \mathbf{g}\left(\mathbf{x}^{k}\right)^{T} \mathbf{p}
\end{array}
$$

, where $0<c_{1}<c_{2}<1$.

- Strong Wolfe conditions:

$$
\begin{array}{r}
\psi\left(\mathbf{x}^{k}+\alpha \mathbf{p}\right) \leq \psi\left(\mathbf{x}^{k}\right)+c_{1} \alpha \mathbf{g}\left(\mathbf{x}^{k}\right)^{T} \mathbf{p} \\
\left\|\mathbf{g}\left(\mathbf{x}^{k}+\alpha \mathbf{p}\right)^{T} \mathbf{p}\right\| \leq-c_{2} \mathbf{g}\left(\mathbf{x}^{k}\right)^{T} \mathbf{p}
\end{array}
$$

, where $0<c_{1}<c_{2}<1$.

## Line Search Methods

## Step Length (continued)

- fix search direction $\mathbf{p}$ and write objective function as $\psi(\alpha)$
- search $\alpha \in\left(\alpha_{l o}, \alpha_{h i}\right)$, where initially $\alpha_{l o}=0$ and $\alpha_{h i}$ is a max step length
- generate trial sequence $\left\{\alpha_{i}\right\}$ by safeguarded quadratic or cubic interpolation of $\psi\left(\alpha_{i}\right)$
- reduce the search interval $\left(\alpha_{l o}, \alpha_{h i}\right)$ by testing the Wolfe condition at each $\alpha_{i}$.


## Line Search Methods

## Search Direction p: Steepest Descent

- $\Delta \psi\left(\mathbf{x}_{k}\right) \approx \alpha \mathbf{g}^{T}\left(\mathbf{x}_{k}\right) \mathbf{p}+\frac{\alpha^{2}}{2} \mathbf{p}^{T} \mathbf{H}\left(\mathbf{x}_{k}\right) \mathbf{p}$
- take $\mathbf{p}=-\mathbf{g}\left(\mathbf{x}_{k}\right)$, the first order term dominates for small $\alpha$
- works well when $\psi(\mathbf{x})$ doesn't have strong curvature


## Line Search Methods

## Search Direction p: Modified Newton

- classic Newton direction is to solve $\mathbf{H}\left(\mathbf{x}_{k}\right) \mathbf{p}=-\mathbf{g}\left(\mathbf{x}_{k}\right)$
- compute modified Cholesky $\mathbf{B}_{k}=\mathbf{H}\left(\mathbf{x}_{k}\right)+\mathbf{E}=\mathbf{L}^{T} \mathbf{D L}$ such that $\|\mathbf{E}\|_{\infty}$ is minimized and solve $\mathbf{L}^{T} \mathbf{D L p}=-\mathbf{g}\left(\mathbf{x}_{k}\right)$
- if $\mathbf{H}\left(\mathbf{x}_{k}\right)$ is positivesemi definite, $\mathbf{E}=0, \mathbf{p}$ is the classic Newton direction.
- if $\mathbf{H}\left(\mathbf{x}_{k}\right)$ is indefinite, $\mathbf{B}_{k}$ is the "closest" modification. $\mathbf{p}$ is still a descent direction.
- if $\mathbf{x}_{k}$ is stationary but $\|\mathbf{E}\|_{\infty}>0$, the algorithm renders a negative curvature direction $\mathbf{p}$.
- if $\mathbf{H}(\cdot)$ is not available, approximate it by finite difference.


## Line Search Methods

## Search Direction p: Quasi-newton

- solve $\mathbf{B}_{k} \mathbf{p}=-\mathbf{g}\left(\mathbf{x}_{k}\right)$, where $\mathbf{B}_{k}$ is a positive definite approximation of $\mathbf{H}\left(\mathbf{x}_{k}\right)$
- $\mathbf{B}_{k}=\mathbf{B}_{k-1}+\mathbf{U}_{k}$, where $\mathbf{U}_{k}$ is a rank-1 or rank-2 update matrix.
- BFGS:

$$
\mathbf{U}_{k}=\frac{1}{\mathbf{g}\left(\mathbf{x}_{k}\right)^{T} \mathbf{p}} \mathbf{g}\left(\mathbf{x}_{k}\right) \mathbf{g}\left(\mathbf{x}_{k}\right)^{T}+\frac{1}{\alpha \mathbf{y}^{T} \mathbf{p}} \mathbf{y} \mathbf{y}^{T}, \mathbf{y}=\mathbf{g}\left(\mathbf{x}_{k}\right)-\mathbf{g}\left(\mathbf{x}_{k-1}\right)
$$

- given Cholesky factorization $\mathbf{B}_{k-1}=\mathbf{L}_{k-1} \mathbf{L}_{k-1}^{T}$, obtain $\mathbf{B}_{k}=\mathbf{L}_{k} \mathbf{L}_{k}^{T}$ by economy matrix update introduced by $\mathbf{U}_{k}$.


## Line Search Methods

## Search Direction p: Conjugate Gradient (CG)

- assume $\mathbf{H}(\cdot)$ is positive definite, the general CG step update is:

$$
\begin{aligned}
& \mathbf{p}_{0}=-\mathbf{g}\left(\mathbf{x}_{0}\right) \\
& \mathbf{p}_{k}=-\mathbf{g}\left(\mathbf{x}_{k}\right)+\beta \mathbf{p}_{k-1}
\end{aligned}
$$

- the choice of $\beta$ needs satisfy CG properties yet produce a descent direction $\mathbf{p}$
- Polak-Ribiere+ (PR+) method:

$$
\beta=\max \left(\frac{\mathbf{g}\left(\mathbf{x}_{k}\right)^{T}\left(\mathbf{g}\left(\mathbf{x}_{k}\right)-\mathbf{g}\left(\mathbf{x}_{k-1}\right)\right)}{\left\|\mathbf{g}\left(\mathbf{x}_{k-1}\right)\right\|^{2}}, 0\right)
$$

- together with a strong Wolfe condition with $0<c_{1}<c_{2}<\frac{1}{2}$, PR+ satisfies all necessary properties.


## Trust Region Methods

- General idea:

$$
\begin{equation*}
\arg \min _{\Delta \mathbf{x}} \Delta \psi\left(\mathbf{x}_{k}\right)=\mathbf{g}\left(\mathbf{x}_{k}\right)^{T} \Delta \mathbf{x}+\frac{1}{2} \Delta \mathbf{x}^{T} \mathbf{H}\left(\mathbf{x}_{k}\right) \Delta \mathbf{x} \text {, s.t. }\|\Delta \mathbf{x}\| \leq \Delta_{k} \tag{1}
\end{equation*}
$$

- $\Delta_{k}$ is an appropriately choosen trust region radius at each iteration
- $\rho_{k}=\frac{\psi\left(\mathbf{x}_{k}+\Delta \mathbf{x}\right)-\psi\left(\mathbf{x}_{k}\right)}{\Delta \psi\left(\mathbf{x}_{k}\right)}$ measures the actual reduction relative to model reduction
- adjust $\Delta_{k}$ based on how good is $\rho_{k}$


## Trust Region Methods

## Nearly Exact Search Direction

- for moderate problem size, we can solve sub-problem (1) exact.
- global solution $\Delta \mathbf{x}^{*}$ to problem (1) exists iff,

$$
\begin{gather*}
\left(\mathbf{H}\left(\mathbf{x}_{k}\right)+\lambda \mathbf{I}\right) \Delta \mathbf{x}^{*}=-\mathbf{g}\left(\mathbf{x}_{k}\right)  \tag{2}\\
\lambda\left(\Delta_{k}-\left\|\Delta \mathbf{x}^{*}\right\|\right)=0 \tag{3}
\end{gather*}
$$

$\left(\mathbf{H}\left(\mathbf{x}_{k}\right)+\lambda \mathbf{I}\right)$ is at least positive semidefinite

- given $\lambda, \Delta \mathbf{x}^{*}$ can be computed from equation (2)
- trick is to solve $\lambda$
- $\mathbf{H}(\cdot)$ is positive definite, $\lambda=0$ or root finding.
- $\mathbf{H}(\cdot)$ is semi-definite or indefinite, need explore eigen structure such that the modified matrix $\left(\mathbf{H}\left(\mathbf{x}_{k}\right)+\lambda \mathbf{I}\right)$ is positive definite.
- need choose appropriate matrix factorization in different situations for best performance.


## Trust Region Methods

## Conjugate Gradient-Steihaug Direction

- for large problem, sufficient to get an non-exact but descent direction at each iteration $k$.
- generate a sequence $\left\{\left(\alpha_{i}, \mathbf{d}_{i}\right)\right\}$ of step length $\alpha_{i}$ and CG directions $\mathbf{d}_{i}$ computed as usual, initially choose $\mathbf{d}_{0}=-\mathbf{g}\left(\mathbf{x}_{k}\right)$.
- for each $i$, try $\alpha_{i}=1$ and $\mathbf{p}=\sum_{j=0}^{i-1} \alpha_{j} \mathbf{d}_{j}+\alpha_{i} \mathbf{d}_{j}$. If $\|\mathbf{p}\|>\Delta_{k}$, scale down $\alpha_{i}$ such that $\|\mathbf{p}\|=\Delta_{k}$ and make a step move with $\Delta \mathbf{x}=\mathbf{p}$.


## Trust Region Methods

## Conjugate Gradient-Steihaug Direction (continued)

- to ensure CG propterties and descent direction,
- test $\mathbf{d}_{j}^{T} \mathbf{H}\left(\mathbf{x}_{k}\right) \mathbf{d}_{j}>0, \forall j<i$ and stop at the first $i$ such that

$$
\mathbf{d}_{i}^{T} \mathbf{H}\left(\mathbf{x}_{k}\right) \mathbf{d}_{j} \leq 0 \text {, let } \mathbf{q}=\sum_{j=0}^{i-1} \alpha_{j} \mathbf{d}_{j}
$$

- $\mathbf{q}$ is certainly an acceptable choice of $\Delta \mathbf{x}$
- can obtain further reduction to choose $\Delta \mathbf{x}=\mathbf{q}+\tau \mathbf{d}_{i}$ for some $\tau$

$$
\Delta \psi\left(\mathbf{x}_{k}\right)=\underbrace{\mathbf{g}\left(\mathbf{x}_{k}\right)^{T} \mathbf{q}+\frac{1}{2} \mathbf{q}^{T} \mathbf{H}\left(\mathbf{x}_{k}\right) \mathbf{q}}_{\mathbf{q} \text { reduction component }}+\underbrace{\tau \mathbf{g}^{T}\left(\mathbf{x}_{k}\right) \mathbf{d}_{i}+\tau^{2} \frac{1}{2} \mathbf{d}_{i}^{T} \mathbf{H}\left(\mathbf{x}_{k}\right) \mathbf{d}_{i}}_{\mathbf{d}_{i} \text { reduction component }}
$$

- choose $\tau$ with correct sign and $\|\Delta \mathbf{x}\|=\Delta_{k}$


## References I

[1] Jorge Nocedal and Stephen J. Wright: Numerical Optimization, Springer, 1999
[2] Philip E. Gill, Walter Murray and Margaret H. Wright: Practical Optimization, Academic Press, 1981
[3] Philip E. Gill and Walter Murray: Newton-Type Methods for Unconstrained and Linearly Constrained Optimization. Mathematical Programming 7 (1974), pp. 311-350
[4] Philip E. Gill, G. H. Golub, Walter Murray and Michael. A. Saunders:
Methods for Modifying Matrix Factorizations, Mathematics of Computation, Volumn 28, Number 126, April 1974, pages 505-535
[5] Philip E. Gill, Walter Murray and Michael A. Saunders: Methods for computing and modifying the LDV factors of a matrix, Mathematics of Computation, Volumn 29, Number 132, October 1975, pages 1051-1077

## References II

[6] Anders. Forsgren, Philip E. Gill and Walter Murray: Computing Modified Newton Directions Using a Partial Cholesky Factorization, SIAM J. SCI. COMPUT. Vol. 16, No. 1, pp. 139-150
[7] J.E. Dennis and Robert B. Schnabel: A New Derivation of Symmetric Positive Definite Secant Updates; CU-CS-185-80 August 1980 Computer Science Technical Reports, Summer 8-1-1980, University of Colorado at Boulder

