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Nonlinear Programming

General Formulation

min
x∈Rn

ψ(x), s.t. cl ≤ c(x) ≤ cu

bl ≤ Ax ≤ bu
l ≤ x ≤ u (1)

ψ(x) is a general smooth (twice continuously differentiable) function
with gradient g(x) and Hessian H(x).

c(x) are general nonlinear constraint functions, assume c(x) are twice
differentiable as well.

bl ≤ Ax ≤ bu are general linear constraints.

l ≤ x ≤ u are simple bound constraints.
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Nonlinear Programming

Feasible Direction

for linearly constrained problems, active set method searches a null
space direction p wrt working set W such that
AW(xk + αp) = AWxk .

for nonlinear constraints, in order to retain the equality
cW(x) = cW(xk), we need move along a feasible arc
x(t) = (x0(t), x1(t), · · · , xn−1(t)).

let p be the tangent vector to the arc, d
dt cW(xk) = JW(xk)p = 0, in

other words p is a null space direction wrt the Jacobian JW(xk) of
active constraints cW(xk).
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Nonlinear Programming

Simplified Formulation using Active Set Method

Mathwrist directly solves the general formulation (1), implementation
based on SNOPT method [4].

For brevity of discussion and without loss of generality, here we are
looking at a simplified form

min
x∈Rn

ψ(x), s.t. c(x) ≥ 0 (2)

we can include linear constraints as a part of c(x), since the Jacobian
of Ax is just A.

please refer to our linear programming (LP) and quadratic
programming (QP) documentation for the details of handling
constraint upper bounds and simple bound constraints.
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Nonlinear Programming

Equality Constrained QP Problem

Moving along a feasible arc x(t) wrt a fixed working set W, we can
approximate the objective function as

ψ(x(t)) ≈ ψ(xk) + tgT (xk)p+
1

2
t2pT ▽xx L(xk)p (3)

, where ▽xxL(xk) is the Hessian matrix of the Lagrangian function L(x, λ)
wrt x,

L(x, λ) = ψ(x)− λT cW(x) (4)

Define vector d = tp. Minimizing (3) is to solve an equality constrained
QP

min
d∈Rn

gT (xk)d+
1

2
dT ▽xx L(xk)d s.t. JW(xk)d = 0 (5)
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Nonlinear Programming

Sequential Quadratic Programming (SQP)

At the k-th major iteration, define

Jk := J(xk)

ck := c(xk)

gk := g(xk)

▽xxLk := ▽xxL(xk)

linearize all nonlinear constraints c(x) to ĉ(x) = ck + Jk(x− xk).

approximate c(x) ≥ 0 by ĉ(x) ≥ 0, equivalently Jkd ≥ −ck for
d = x− xk .
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Nonlinear Programming

Sequential Quadratic Programming (SQP continued)

formulate and solve sub QP problems in minor iterations,

min
d∈Rn

gTk d+
1

2
dT ▽xx Lkd s.t. Jkd ≥ −ck (6)

compute a step length α of moving along d.

update xk+1 = xk + αd, and recompute Jk+1, gk+1, ck+1 and
▽xxLk+1 and continue to the (k + 1)-th iteration.
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Nonlinear Programming

Primal-dual Solution

equality constrained sub QP (5) is equivalent to

min
x∈Rn,λ∈Rm

L(x , λ) (7)

working on an augmented unknown space (x, λ), solve for both x and
λ simultaneously.

upon the termination of a sub QP (6),

obtain d and estimate of Lagrange multipliers µ.
by strict complementary condition, µi = 0,∀i /∈ W.
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Nonlinear Programming

Quasi-Newton Approximation

replace the Hessian matrix ▽xxLk in sub QP (6) by a Quasi-Newton
approximation matrix Bk .

between SQP major iterations, Bk is updated by BFGS method on a
modified Lagrange function,

Lm(x, λ) = ψ(x)− λT (c(x)− ĉ(x)) (8)

Lm(x, λ) has same Hessian as L(x, λ).
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Nonlinear Programming

Quasi-Newton Approximation, BFGS Update

Define,

δ = xk+1 − xk

y = ▽Lm(xk+1, λk+1)−▽Lm(xk , λk+1)

= gk+1 − gk − (Jk+1 − Jk)
Tλk+1

theoretically, for the positive definiteness of Bk+1, we need yT δ > 0.

if yT δ < σ , where σ = α(1− η)dTBkd, for a constant 0 < η < 1,
two trial modifications are attempted, details in [4].

if both trials fail to remedy the definitness of Bk+1, the Hessian
approximation is not updated.
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Nonlinear Programming

Merit Function

as soon as we move away from xk , c(x)− ĉ(x) ̸= 0, feasibility could
be broken.

need a merit function to balance the reduction of ψ(x) and the
violation of c(x).

slack variables s and penalty factor ρ are introduced to incorporate
the violation components in the merit function.

Mρ(x, λ, s) = ψ(x)− λT (c(x)− s) +
1

2

m∑
i=1

ρi (ci (x)− si )
2 (9)
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Nonlinear Programming

Merit Function in Line Search

upon the termination of a sub QP, define the augmented search
direction as d

ξ
q

 =

 d
µ− λk
ŝk − sk

 =

 d
µ− λk

Jkd+ ck − sk

 (10)

use a line search method with Mρ(x, λ, s) as the objective function to
determine a step length α along this augmented direction.

update the primal-dual variables to start the (k + 1)-th major
iteration,

xk+1 = xk + αd
λk+1 = λk + αξ
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Nonlinear Programming

Penalty ρ in Merit Function

fix the search direction (10) and write the merit function (9) as a
univariate function ϕρ(α) wrt step length α,

v(α) =

xk
λk
sk

+ α

d
ξ
q


ϕρ(α) = Mρ(v(α)) (11)

to make descent step move, we need ϕ′(0) be significantly negative.
The choice in SNOPT method [4] is to find ρ such that

ϕ′ρ(0) < −1

2
dTBkd (12)
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Nonlinear Programming

Constraint Feasibility

use phase-I active set method to find an initial feasible point x0 wrt
only general linear constraints and simple bounds in formulation (1).

if x0 is found, the active set method ensures linear constraints are
satisfied in all subsequent iterations; otherwise, declare the problem
has no feasible solution.

at each major iteration to start a sub QP problem, it is possible that
a feasible point does not exist wrt all linear constraints and the
linearization ĉ(xk) of nonlinear constraints c(x).
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Nonlinear Programming

Elastic Programming Mode

if a sub QP cannot find a starting feasible point, we introduce surplus
variables w and enter elastic programming (EP) mode to solve,

min
x∈Rn,w∈Rm

ψ(e)(x,w) s.t. c(e)(x,w) ≥ 0,w ≥ 0

, where

ψ(e)(x,w) = ψ(x) + γeTw
c(e)(x,w) = c(x) +w

if the new linearization ĉ(xk+1) has a starting feasible point, we quit
from the EP mode and solve the original problem (2) again.

if ĉ(xk+1) is still infeasible, we increase penalty factor γ until a max
penalty value is reached.
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