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Nonlinear Programming

General Formulation

)Eg]ilgnw(x), st. ¢ <c(x)<c

I_ngu (1)

@ 1(x) is a general smooth (twice continuously differentiable) function
with gradient g(x) and Hessian H(x).

@ ¢(x) are general nonlinear constraint functions, assume c(x) are twice
differentiable as well.

@ b; < Ax < by, are general linear constraints.

@ | < x < u are simple bound constraints.
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Nonlinear Programming

Feasible Direction

o for linearly constrained problems, active set method searches a null
space direction p wrt working set VW such that
Ay (xk + ap) = Ayxy.

@ for nonlinear constraints, in order to retain the equality
aw(x) = an(xk), we need move along a feasible arc
x(t) = (xo(t), xa(t), -+, Xn-1(t)).

o let p be the tangent vector to the arc, %oy (xx) = Jw(xk)p =0, in
other words p is a null space direction wrt the Jacobian Jyy(xx) of
active constraints cyy(xk).
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Nonlinear Programming

Simplified Formulation using Active Set Method

@ Mathwrist directly solves the general formulation (1), implementation
based on SNOPT method [4].

@ For brevity of discussion and without loss of generality, here we are
looking at a simplified form

)[ggnw(x), s.t. ¢(x) >0 (2)

o

@ we can include linear constraints as a part of ¢(x), since the Jacobian
of Ax is just A.
@ please refer to our linear programming (LP) and quadratic

programming (QP) documentation for the details of handling
constraint upper bounds and simple bound constraints.
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Nonlinear Programming

Equality Constrained QP Problem

Moving along a feasible arc x(t) wrt a fixed working set WV, we can
approximate the objective function as

Y1) ~ k) + 18T (<P + 52T T Ll (3)

, where 7, L(xk) is the Hessian matrix of the Lagrangian function £(x, A)
wrt X,

L(x,A) = 9(x) = AT ow(x) (4)

Define vector d = tp. Minimizing (3) is to solve an equality constrained

QP
1
min g’ (xi)d + §dT Vi L(x)d s.t. Jyy(xx)d =0 ()
E n

v
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Nonlinear Programming

Sequential Quadratic Programming (SQP)
At the k-th major iteration, define

Je = J(xk)

Ck = C(Xk)

gk = g(x«)
Valk = VxcL(Xk)

@ linearize all nonlinear constraints c(x) to &(x) = cx + Jx(x — xk).

@ approximate c(x) > 0 by é(x) > 0, equivalently J,d > —c for
d=x—x.
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Nonlinear Programming

Sequential Quadratic Programming (SQP continued)
@ formulate and solve sub QP problems in minor iterations,

1
ingld+ -d” t. > —
E%ngkd+2d VUxx Lrd s.t. Jpd > —cy (6)

@ compute a step length o of moving along d.

@ update xx+1 = Xk + ad, and recompute Jy 11, 8k+1, Ck+1 and
VxxLkr1 and continue to the (k + 1)-th iteration.
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Nonlinear Programming

Primal-dual Solution
@ equality constrained sub QP (5) is equivalent to

VERMAER™ £ A) (7)

@ working on an augmented unknown space (x, \), solve for both x and
A simultaneously.
@ upon the termination of a sub QP (6),

e obtain d and estimate of Lagrange multipliers p.
e by strict complementary condition, p; = 0,Vi ¢ W.
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Nonlinear Programming

Quasi-Newton Approximation

@ replace the Hessian matrix 7Lk in sub QP (6) by a Quasi-Newton
approximation matrix By.

@ between SQP major iterations, By is updated by BFGS method on a
modified Lagrange function,

Lin(x,A) = 1(x) = AT (c(x) — &(x)) (8)
® Lm,(x,A) has same Hessian as L£(x, \).
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Nonlinear Programming

Quasi-Newton Approximation, BFGS Update
Define,

0 = Xeq1— Xk
Y = VLm(Xkt1, Akt1) — VELm(Xk, Aks1)

= g1 — 8k — (Jkt1 — Ik) T Akt

o theoretically, for the positive definiteness of By 1, we need y'§ > 0.

e ify’§ <o, where ¢ = a(l — n)d"B,d, for a constant 0 < 7 < 1,
two trial modifications are attempted, details in [4].

@ if both trials fail to remedy the definitness of By 1, the Hessian
approximation is not updated.
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Nonlinear Programming

Merit Function

@ as soon as we move away from xx, c(x) — &(x) # 0, feasibility could
be broken.

@ need a merit function to balance the reduction of ¥ (x) and the
violation of ¢(x).

@ slack variables s and penalty factor p are introduced to incorporate
the violation components in the merit function.

My(x, A, 8) = 1h(x) — AT (c(x) —s) + Zp, c(x)—si)?  (9)

v
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Nonlinear Programming

Merit Function in Line Search
@ upon the termination of a sub QP, define the augmented search

direction as
d d d
El=lr-—X]= W= Ak (10)
q Sk — Sk Jid + ¢ — sk

@ use a line search method with M (x, A, s) as the objective function to
determine a step length « along this augmented direction.

@ update the primal-dual variables to start the (k + 1)-th major
iteration,

Xky1 = Xk +ad
Ayl = Mt af
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Nonlinear Programming

Penalty p in Merit Function

o fix the search direction (10) and write the merit function (9) as a
univariate function ¢,(«) wrt step length «,

Xk d
vie) = M| +alé
Sk q
$p(a) = My(v(a)) (11)

@ to make descent step move, we need ¢'(0) be significantly negative.
The choice in SNOPT method [4] is to find p such that

9,(0) < —%dTBkd (12)

v
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Nonlinear Programming

Constraint Feasibility

@ use phase-l active set method to find an initial feasible point xg wrt
only general linear constraints and simple bounds in formulation (1).

e if xg is found, the active set method ensures linear constraints are
satisfied in all subsequent iterations; otherwise, declare the problem
has no feasible solution.

@ at each major iteration to start a sub QP problem, it is possible that
a feasible point does not exist wrt all linear constraints and the
linearization &(xx) of nonlinear constraints c(x).
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Nonlinear Programming

Elastic Programming Mode

o if a sub QP cannot find a starting feasible point, we introduce surplus
variables w and enter elastic programming (EP) mode to solve,

i (e) (e) > >
XGRT\:vnEme (x,w) s.t. ¢'(x,w) >0,w >0

, where

D (x, w) = P(x) + e w
c(®(x,w) = ¢(x) + w

o if the new linearization &(xx41) has a starting feasible point, we quit
from the EP mode and solve the original problem (2) again.

@ if &(xky1) is still infeasible, we increase penalty factor «y until a max
penalty value is reached.
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