Linear Programming

Copyright © Mathwrist LLC 2023

January 1, 2023

(Copyright ©Mathwrist LLC 2023)

Mathwrist Presentation Series

January 1, 2023

1/12

• Canonical form,

$$\min_{\mathbf{x}\in\mathbb{R}^n} \mathbf{c}^T \mathbf{x}, \text{ s.t. } \mathbf{A}\mathbf{x} = \mathbf{b} \text{ and } \mathbf{x} \ge 0 \tag{1}$$

A is $m \times n$, m < n.

• Practically, a more general formulation

$$\min_{\mathbf{x}\in\mathbb{R}^n} \mathbf{c}^T \mathbf{x}, \text{ s.t. } \mathbf{b}_I \leq \mathbf{A}\mathbf{x} \leq \mathbf{b}_u \text{ and } \mathbf{I} \leq \mathbf{x} \leq \mathbf{u}$$
(2)

b₁ ≤ Ax ≤ b_u are general linear constraints.
I ≤ x ≤ u are simple bound constraints.

Simplex Method: General Setup

- introduce slack and surplus variables to convert the general form (2) to canonical form (1)
- maintain index set \mathcal{B} for m number of basic variables \mathbf{x}_B and index set \mathcal{N} for n m number of non-basis variables \mathbf{x}_N
- re-arrange (conceptually) the order of all variables such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ becomes,

$$\left(\begin{array}{c|c} \mathbf{B} & \mathbf{N} \end{array}\right) \left(\begin{array}{c} \mathbf{x}_B \\ \mathbf{x}_N \end{array}\right) = \mathbf{b}$$

• if **B** is nonsingular, fix $\mathbf{x}_N = 0$ and solve $\mathbf{B}\mathbf{x}_B = \mathbf{b}$ for a basic feasible solution.

Simplex Method: Step Update

• optimality conditions at iteration k:

$$\mathbf{B}_{k}^{T} \lambda_{B} = \mathbf{c}_{B} \tag{3}$$

$$\mathbf{N}_{k}^{T} \lambda_{B} + \lambda_{N} = \mathbf{c}_{N} \tag{4}$$

$$\lambda_{N} \geq 0 \tag{5}$$

- if $\exists q \in \mathcal{N}$ such that $\lambda_q < 0$, then there is a feasible descent direction $\mathbf{r} = -\mathbf{B}_k^{-1}\mathbf{A}_q$, where \mathbf{A}_q is the q-th column of \mathbf{A} .
- moving along **r**, \mathbf{x}_q becomes positive hence q enters the set \mathcal{B}
- meanwhile a basic variable \mathbf{x}_p hits 0 first, hence p quits the set \mathcal{B} and joins to \mathcal{N} .
- pivot operation (p, q) updates \mathbf{B}_{k+1} and \mathbf{N}_{k+1} to start the iteration k+1

Simplex Method: Performance Efficiency

- need repeatedly solve equation (3).
- maintain LU factorization $\mathbf{B}_k = \mathbf{L}_k \mathbf{U}_k$
- fast LU update to obtain $\mathbf{B}_{k+1} = \mathbf{L}_{k+1}\mathbf{U}_{k+1}$ after the pivot
- steepest edge method to select the enter index q.

Simplex Method: Initial Feasibile Point

- introduce artificial variables z for all violated constraints.
- solve a phase-I feasibility problem,

$$\min_{\mathbf{x}, \mathbf{z}} \mathbf{e}^{\mathsf{T}} \mathbf{z}, \text{ s.t.} \quad \mathbf{A} \mathbf{x} \pm \mathbf{z} = \mathbf{b}$$
$$\mathbf{x} \ge \mathbf{0},$$
$$\mathbf{z} \ge \mathbf{0}$$

• pivoting z first, once z quits from \mathcal{B} , it never enters \mathcal{B} again.

Active Set Method: General Setup

- directly work on the general form (2)
- maintain an index set $\mathcal W$ of working constraints and the complement index set $\mathcal N$ for non-working constraints.
- working constraints $\mathbf{A}_{\mathcal{W}}\mathbf{x} = \mathbf{b}_{\mathcal{W}}$, where $\mathbf{b}_{\mathcal{W}}$ are the active bounds of these constraints.
- partition x to the set b of fixed variables x_b (equal to their bounds) and the complement set f of free variables x_f
- rearrange (conceptually) the order of variables such that **Ax** becomes to

$$\left(\begin{array}{c|c} \mathbf{B} & \mathbf{F} \end{array}\right) \left(\begin{array}{c} \mathbf{x}_b \\ \mathbf{x}_f \end{array}\right)$$

Active Set Method: Search Direction p

- \mathbf{x}_b is not changed along \mathbf{p} , i.e. $\mathbf{p} = (0, \mathbf{p}_f)$
- looking for a null space direction wrt \mathbf{F}_{W}^{T} such that $\mathbf{F}_{W}\mathbf{p}_{f}=0$
- moving along p does not change the value of working constraints, $A_{\mathcal{W}} \textbf{x} = \textbf{b}_{\mathcal{W}} \text{ still holds.}$
- find step length α along **p** to hit the first blocking constraint,
 - simple bound $j \in f$ is hit, add j to set b, \mathbf{x}_j then becomes a fixed variable.
 - general constraint $i \in \mathcal{N}$ is hit, add i to set \mathcal{W} , \mathbf{A}_i then becomes a working constraint.
 - there is no blocking constraint, declared the LP problem has unbounded solution.
- update $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \mathbf{p}$ and relevant index sets.

Active Set Method: Optimality Conditions

stationary conditions:

$$\begin{pmatrix} \mathbf{I} & \mathbf{B}_{\mathcal{W}}^T \\ \mathbf{F}_{\mathcal{W}}^T \end{pmatrix} \begin{pmatrix} \lambda_b \\ \lambda_{\mathcal{W}} \end{pmatrix} = \begin{pmatrix} \mathbf{c}_b \\ \mathbf{c}_f \end{pmatrix}$$

- λ_b are the Lagrange multipliers of simple bound constraints of \mathbf{x}_b .
- λ_W are the Lagrange multipliers of general working constraints \mathbf{A}_W .
- for iteration at x_k to be optimal, Lagrange multipliers need be ≥ 0 for lower bounded constraints, ≤ 0 for upper bounded ones.
- otherwise, found the "worst" Lagrange multiplier,
 - for general constraint index $i \in W$, if λ_i is the worst, move i from W to \mathcal{N} .
 - for simple bound index $j \in b$, if λ_j is the worst, move j from b to set f.
 - update the relevant index sets and start the k + 1 iteration.

Active Set Method: QR Update

maintain **QR** factorization

$$\mathbf{F}_{\mathcal{W}}^{T} = \underbrace{\left(\begin{array}{c|c} \mathbf{Y} & \mathbf{Z} \end{array}\right)}_{\mathbf{Q}} \begin{pmatrix} \mathbf{R} \\ \mathbf{0} \end{pmatrix}$$

- seek a descent null space direction p_f = -ZZ^Tc_f, c_f is the sub cost vector for free variables.
- **F**_W changes whenever the working set W or the set b of fixed variables changes, economically update the **QR** factors, not refactoring.

Active Set Method: Initial Working Set and Feasible Point

- given initial guess of **x**, take slightly violated constraints to form the initial index sets W and b.
- solve \mathbf{x}_f to satisfy $\mathbf{F}_{\mathcal{W}}\mathbf{x}_f = \mathbf{b}_{\mathcal{W}} \mathbf{B}_{\mathcal{W}}\mathbf{x}_b$
- introduce artificial variables y and z and solve an active-set phase-I feasibility subproblem,

$$\min_{\mathbf{x}, \mathbf{y}, \mathbf{z}} \mathbf{e}^{\mathsf{T}} \mathbf{y} + \mathbf{e}^{\mathsf{T}} \mathbf{z}, \text{ s.t.} \quad \mathbf{b}_{I} \leq \mathbf{A} \mathbf{x} \pm \mathbf{z} \leq \mathbf{b}_{u}$$

$$\mathbf{I} \leq \mathbf{x} \pm \mathbf{y} \leq \mathbf{u},$$

$$\mathbf{y} \geq \mathbf{0}$$

$$\mathbf{z} \geq \mathbf{0}$$

- David G. Luenberger: Linear and Nonlinear Programming, 2nd edition, Springer 2003
- [2] Jorge Nocedal and Stephen J. Wright: Numerical Optimization, Springer, 1999
- [3] Philip E. Gill, Walter Murray and Margaret H. Wright: Practical Optimization, Academic Press, 1981
- [4] J.J. Forrest and J. A. Tomlin: Updated Triangular Factors of the Basis to Maintain Sparsity in the Product from Simplex Method, Mathematical Programming 2(1972) 263-278