Linearly Constrained Optimization

Copyright © Mathwrist LLC 2023

January 1, 2023

(Copyright ©Mathwrist LLC 2023)

Mathwrist Presentation Series

Linearly Constrained Optimization

General Formulation

$$\min_{\boldsymbol{\kappa}\in\mathbb{R}^n}\psi(\boldsymbol{\mathsf{x}}), \text{ s.t. } \boldsymbol{\mathsf{b}}_l\leq\boldsymbol{\mathsf{A}}\boldsymbol{\mathsf{x}}\leq\boldsymbol{\mathsf{b}}_u \text{ and } \boldsymbol{\mathsf{I}}\leq\boldsymbol{\mathsf{x}}\leq\boldsymbol{\mathsf{u}}$$

- ψ(x) is a general smooth (twice continuously differentiable) function with gradient g(x) and Hessian H(x).
- $\mathbf{b}_l \leq \mathbf{A}\mathbf{x} \leq \mathbf{b}_u$ are general linear constraints.
- $I \le x \le u$ are simple bound constraints.
- Mathwrist takes the general form (1) and solves it using active set method.
- without loss of generality, our discussion assumes a convenient form

$$\min_{\mathbf{x}\in\mathbb{R}^n}\psi(\mathbf{x}), \text{ s.t. } \mathbf{A}\mathbf{x} \ge \mathbf{b}$$
(2)

• a special case of (1) is box-constrained optimization. Mathwrist has a dedicated solver for it.

(Copyright ©Mathwrist LLC 2023)

(1)

Active Set Method

- same framework discussed in our linear programming (LP) and quadratic programming (QP) documentation.
- retain and apply economy update of QR factoring,

$$\mathbf{A}_{\mathcal{W}}^{\mathcal{T}} = \underbrace{\left(\begin{array}{c|c} \mathbf{Y} & \mathbf{Z} \end{array}\right)}_{\mathbf{Q}} \begin{pmatrix} \mathbf{R} \\ \mathbf{0} \end{pmatrix}$$

- iteratively make step moves along a descent null space direction $\mathbf{p} = \mathbf{Z}\mathbf{p}_z$ wrt the current active set \mathcal{W} .
- same techniques as unconstrained optimization to compute **p**_z.

Taylor expansion

For any search direction ${\bf p}$ and step length $\hat{\alpha},$

$$\psi(\mathbf{x}_k + \hat{\alpha}\mathbf{p}) = \psi(\mathbf{x}_k) + \hat{\alpha}\mathbf{p}^T\mathbf{g}(\mathbf{x}_k) + \frac{1}{2}\hat{\alpha}^2\mathbf{p}^T\mathbf{H}(\hat{\mathbf{x}})\mathbf{p}$$

, where

$$\hat{\mathbf{x}} = \mathbf{x}_k + \hat{\alpha}\theta\mathbf{p}, 0 \le \theta \le 1$$

In a null space direction, $\mathbf{p} = \mathbf{Z}\mathbf{p}_z$, the step reduction

$$\Delta \psi_{k} = \psi(\mathbf{x}_{k} + \hat{\alpha}\mathbf{p}) - \psi(\mathbf{x}_{k}) = \hat{\alpha}\mathbf{p}_{z}^{T}\tilde{\mathbf{g}}(\mathbf{x}_{k}) + \frac{1}{2}\hat{\alpha}^{2}\mathbf{p}_{z}^{T}\tilde{\mathbf{H}}(\hat{\mathbf{x}})\mathbf{p}_{z} \quad (3)$$

$$\tilde{\mathbf{g}}(\mathbf{x}_{k}) = \mathbf{Z}^{T}\mathbf{g}(\mathbf{x}_{k}) \text{ is the reduced gradient} \quad (4)$$

$$\tilde{\mathbf{H}}(\hat{\mathbf{x}}) = \mathbf{Z}^{T}\mathbf{H}(\hat{\mathbf{x}})\mathbf{Z} \text{ is the reduced Hessian} \quad (5)$$

4/9

Line Search

- for a descent direction, we need the first order term $\mathbf{p}_z^T \tilde{\mathbf{g}}(\mathbf{x}_k) < 0$.
- the second order term in (3) will dominate $\Delta \psi_k$ for large $\hat{\alpha}$.
- if the reduced Hessian in (5) has positive curvature, $\Delta \psi_k$ overshooting for large $\hat{\alpha}$.
- for convex QP problems, unit step $\hat{lpha}=1$ reaches the local optimal.
- for general $\psi(\mathbf{x})$, we need a line search algorithm to determine $\hat{\alpha}$.
- actual step length $\alpha \in [0, \hat{\alpha}]$ determined by active set, i.e. by a blocking constraint.

Search Directions

- Modified Newton method: solve $\mathbf{p}_z \tilde{\mathbf{H}}(\mathbf{x}_k) = -\tilde{\mathbf{g}}(\mathbf{x}_k)$
 - modified Cholesky on reduced Hessian $\tilde{\mathbf{H}}(\mathbf{x}_k)$.
 - apply low rank update on the factorization whenever possible.
 - when $\tilde{\mathbf{H}}(\mathbf{x}_k)$ is indefinite, compute a direction of negative curvature.
- Quasi-Newton: solve $\mathbf{p}_{z}\mathbf{Z}^{T}\mathbf{B}_{k}\mathbf{Z} = -\tilde{\mathbf{g}}(\mathbf{x}_{k})$, where \mathbf{B}_{k} is the approximation of Hessian $\mathbf{H}(\mathbf{x}_{k})$.
 - \mathbf{B}_k is obtained by BFGS update from \mathbf{B}_{k-1} .
 - compute reduced Cholesky $\mathbf{Z}^{\mathsf{T}}\mathbf{B}_{k}\mathbf{Z} = \mathbf{L}\mathbf{L}^{\mathsf{T}}$ to solve \mathbf{p}_{z} .

Optimality Conditions

- \mathbf{x}^* is feasible, $\mathbf{A}_{\omega}\mathbf{x}^* = \mathbf{b}_{\omega}$.
- $\mathbf{g}(\mathbf{x}^*) = \mathbf{A}_{\omega}^{\mathsf{T}} \lambda$ or equivalently $\mathbf{Z}^{\mathsf{T}} \mathbf{g}(\mathbf{x}^*) = 0$.
- Z^TH(x*)Z is positive semi-definite (necessary) or positive definite (sufficient).
- Lagrange multiplier λ_i ≥ 0 (necessary) or λ_i > 0 (sufficient), for all lower bounded constraints i ∈ ω.

- Jorge Nocedal and Stephen J. Wright: Numerical Optimization, Springer, 1999
- [2] Philip E. Gill, Walter Murray and Margaret H. Wright: Practical Optimization, Academic Press, 1981
- [3] Philip E. Gill and Walter Murray: Newton-Type Methods for Unconstrained and Linearly Constrained Optimization. Mathematical Programming 7 (1974), pp. 311-350
- [4] Philip E. Gill, G. H. Golub, Walter Murray and Michael. A. Saunders: Methods for Modifying Matrix Factorizations, Mathematics of Computation, Volumn 28, Number 126, April 1974, pages 505-535
- [5] Philip E. Gill, Walter Murray and Michael A. Saunders: Methods for computing and modifying the LDV factors of a matrix, Mathematics of Computation, Volumn 29, Number 132, October 1975, pages 1051-1077

[6] Anders. Forsgren, Philip E. Gill and Walter Murray: Computing Modified Newton Directions Using a Partial Cholesky Factorization, SIAM J. SCI. COMPUT. Vol. 16, No. 1, pp. 139-150