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Linearly Constrained Optimization

General Formulation

min
x∈Rn

ψ(x), s.t. bl ≤ Ax ≤ bu and l ≤ x ≤ u (1)

ψ(x) is a general smooth (twice continuously differentiable) function
with gradient g(x) and Hessian H(x).

bl ≤ Ax ≤ bu are general linear constraints.

l ≤ x ≤ u are simple bound constraints.

Mathwrist takes the general form (1) and solves it using active set
method.

without loss of generality, our discussion assumes a convenient form

min
x∈Rn

ψ(x), s.t. Ax ≥ b (2)

a special case of (1) is box-constrained optimization. Mathwrist has a
dedicated solver for it.
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Linearly Constrained Optimization

Active Set Method

same framework discussed in our linear programming (LP) and
quadratic programming (QP) documentation.

retain and apply economy update of QR factoring,

AT
W =

(
Y Z

)︸ ︷︷ ︸
Q

(
R
0

)

iteratively make step moves along a descent null space direction
p = Zpz wrt the current active set W.

same techniques as unconstrained optimization to compute pz .
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Linearly Constrained Optimization

Taylor expansion

For any search direction p and step length α̂,

ψ(xk + α̂p) = ψ(xk) + α̂pTg(xk) +
1

2
α̂2pTH(x̂)p

, where
x̂ = xk + α̂θp, 0 ≤ θ ≤ 1

In a null space direction, p = Zpz , the step reduction

∆ψk = ψ(xk + α̂p)− ψ(xk) = α̂pTz g̃(xk) +
1

2
α̂2pTz H̃(x̂)pz (3)

g̃(xk) = ZTg(xk) is the reduced gradient (4)

H̃(x̂) = ZTH(x̂)Z is the reduced Hessian (5)
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Linearly Constrained Optimization

Line Search

for a descent direction, we need the first order term pTz g̃(xk) < 0.

the second order term in (3) will dominate ∆ψk for large α̂.

if the reduced Hessian in (5) has positive curvature, ∆ψk

overshooting for large α̂.

for convex QP problems, unit step α̂ = 1 reaches the local optimal.

for general ψ(x), we need a line search algorithm to determine α̂.

actual step length α ∈ [0, α̂] determined by active set, i.e. by a
blocking constraint.
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Linearly Constrained Optimization

Search Directions

Modified Newton method: solve pzH̃(xk) = −g̃(xk)

modified Cholesky on reduced Hessian H̃(xk).
apply low rank update on the factorization whenever possible.
when H̃(xk) is indefinite, compute a direction of negative curvature.

Quasi-Newton: solve pzZTBkZ = −g̃(xk), where Bk is the
approximation of Hessian H(xk).

Bk is obtained by BFGS update from Bk−1.
compute reduced Cholesky ZTBkZ = LLT to solve pz .
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Linearly Constrained Optimization

Optimality Conditions

x∗ is feasible, Aωx∗ = bω.

g(x∗) = AT
ω λ or equivalently ZTg(x∗) = 0.

ZTH(x∗)Z is positive semi-definite (necessary) or positive definite
(sufficient).

Lagrange multiplier λi ≥ 0 (necessary) or λi > 0 (sufficient), for all
lower bounded constraints i ∈ ω.
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