Linearly Constrained Optimization

Copyright © Mathwrist LLC 2023

January 1, 2023

Linearly Constrained Optimization

General Formulation

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} \psi(\mathbf{x}), \text { s.t. } \mathbf{b}_{/} \leq \mathbf{A} \mathbf{x} \leq \mathbf{b}_{u} \text { and } \mathbf{I} \leq \mathbf{x} \leq \mathbf{u} \tag{1}
\end{equation*}
$$

- $\psi(\mathbf{x})$ is a general smooth (twice continuously differentiable) function with gradient $\mathbf{g}(\mathbf{x})$ and Hessian $\mathbf{H}(\mathbf{x})$.
- $\mathbf{b}_{/} \leq \mathbf{A} \mathbf{x} \leq \mathbf{b}_{u}$ are general linear constraints.
- $\mathbf{I} \leq \mathbf{x} \leq \mathbf{u}$ are simple bound constraints.
- Mathwrist takes the general form (1) and solves it using active set method.
- without loss of generality, our discussion assumes a convenient form

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} \psi(\mathbf{x}), \text { s.t. } \mathbf{A} \mathbf{x} \geq \mathbf{b} \tag{2}
\end{equation*}
$$

- a special case of (1) is box-constrained optimization. Mathwrist has a dedicated solver for it.

Linearly Constrained Optimization

Active Set Method

- same framework discussed in our linear programming (LP) and quadratic programming (QP) documentation.
- retain and apply economy update of $\mathbf{Q R}$ factoring,

$$
\mathbf{A}_{\mathcal{W}}^{T}=\underbrace{(\mathbf{Y} \mid \mathbf{Z})}_{\mathbf{Q}}\binom{\mathbf{R}}{0}
$$

- iteratively make step moves along a descent null space direction $\mathbf{p}=\mathbf{Z} \mathbf{p}_{z}$ wrt the current active set \mathcal{W}.
- same techniques as unconstrained optimization to compute \mathbf{p}_{z}.

Linearly Constrained Optimization

Taylor expansion

For any search direction \mathbf{p} and step length $\hat{\alpha}$,

$$
\psi\left(\mathbf{x}_{k}+\hat{\alpha} \mathbf{p}\right)=\psi\left(\mathbf{x}_{k}\right)+\hat{\alpha} \mathbf{p}^{T} \mathbf{g}\left(\mathbf{x}_{k}\right)+\frac{1}{2} \hat{\alpha}^{2} \mathbf{p}^{T} \mathbf{H}(\hat{\mathbf{x}}) \mathbf{p}
$$

, where

$$
\hat{\mathbf{x}}=\mathbf{x}_{k}+\hat{\alpha} \theta \mathbf{p}, 0 \leq \theta \leq 1
$$

In a null space direction, $\mathbf{p}=\mathbf{Z} \mathbf{p}_{\boldsymbol{z}}$, the step reduction

$$
\begin{align*}
\Delta \psi_{k} & =\psi\left(\mathbf{x}_{k}+\hat{\alpha} \mathbf{p}\right)-\psi\left(\mathbf{x}_{k}\right)=\hat{\alpha} \mathbf{p}_{z}^{T} \tilde{\mathbf{g}}\left(\mathbf{x}_{k}\right)+\frac{1}{2} \hat{\alpha}^{2} \mathbf{p}_{z}^{T} \tilde{\mathbf{H}}(\hat{\mathbf{x}}) \mathbf{p}_{z} \tag{3}\\
\tilde{\mathbf{g}}\left(\mathbf{x}_{k}\right) & =\mathbf{Z}^{T} \mathbf{g}\left(\mathbf{x}_{k}\right) \text { is the reduced gradient } \\
\tilde{\mathbf{H}}(\hat{\mathbf{x}}) & =\mathbf{Z}^{T} \mathbf{H}(\hat{\mathbf{x}}) \mathbf{Z} \text { is the reduced Hessian } \tag{5}
\end{align*}
$$

Linearly Constrained Optimization

Line Search

- for a descent direction, we need the first order term $\mathbf{p}_{z}^{T} \tilde{\mathbf{g}}\left(\mathbf{x}_{k}\right)<0$.
- the second order term in (3) will dominate $\Delta \psi_{k}$ for large $\hat{\alpha}$.
- if the reduced Hessian in (5) has positive curvature, $\Delta \psi_{k}$ overshooting for large $\hat{\alpha}$.
- for convex QP problems, unit step $\hat{\alpha}=1$ reaches the local optimal.
- for general $\psi(\mathbf{x})$, we need a line search algorithm to determine $\hat{\alpha}$.
- actual step length $\alpha \in[0, \hat{\alpha}]$ determined by active set, i.e. by a blocking constraint.

Linearly Constrained Optimization

Search Directions

- Modified Newton method: solve $\mathbf{p}_{z} \tilde{\mathbf{H}}\left(\mathbf{x}_{k}\right)=-\tilde{\mathbf{g}}\left(\mathbf{x}_{k}\right)$
- modified Cholesky on reduced Hessian $\tilde{\mathbf{H}}\left(\mathbf{x}_{k}\right)$.
- apply low rank update on the factorization whenever possible.
- when $\tilde{\mathbf{H}}\left(\mathbf{x}_{k}\right)$ is indefinite, compute a direction of negative curvature.
- Quasi-Newton: solve $\mathbf{p}_{z} \mathbf{Z}^{\top} \mathbf{B}_{k} \mathbf{Z}=-\tilde{\mathbf{g}}\left(\mathbf{x}_{k}\right)$, where \mathbf{B}_{k} is the approximation of Hessian $\mathbf{H}\left(\mathbf{x}_{k}\right)$.
- \mathbf{B}_{k} is obtained by BFGS update from \mathbf{B}_{k-1}.
- compute reduced Cholesky $\mathbf{Z}^{\top} \mathbf{B}_{k} \mathbf{Z}=\mathbf{L L}{ }^{T}$ to solve \mathbf{p}_{z}.

Linearly Constrained Optimization

Optimality Conditions

- \mathbf{x}^{*} is feasible, $\mathbf{A}_{\omega} \mathbf{x}^{*}=\mathbf{b}_{\omega}$.
- $\mathbf{g}\left(\mathbf{x}^{*}\right)=\mathbf{A}_{\omega}^{T} \lambda$ or equivalently $\mathbf{Z}^{T} \mathbf{g}\left(\mathbf{x}^{*}\right)=0$.
- $\mathbf{Z}^{T} \mathbf{H}\left(\mathbf{x}^{*}\right) \mathbf{Z}$ is positive semi-definite (necessary) or positive definite (sufficient).
- Lagrange multiplier $\lambda_{i} \geq 0$ (necessary) or $\lambda_{i}>0$ (sufficient), for all lower bounded constraints $i \in \omega$.

References I

[1] Jorge Nocedal and Stephen J. Wright: Numerical Optimization, Springer, 1999
[2] Philip E. Gill, Walter Murray and Margaret H. Wright: Practical Optimization, Academic Press, 1981
[3] Philip E. Gill and Walter Murray: Newton-Type Methods for Unconstrained and Linearly Constrained Optimization. Mathematical Programming 7 (1974), pp. 311-350
[4] Philip E. Gill, G. H. Golub, Walter Murray and Michael. A. Saunders:
Methods for Modifying Matrix Factorizations, Mathematics of Computation, Volumn 28, Number 126, April 1974, pages 505-535
[5] Philip E. Gill, Walter Murray and Michael A. Saunders: Methods for computing and modifying the LDV factors of a matrix, Mathematics of Computation, Volumn 29, Number 132, October 1975, pages 1051-1077

References II

[6] Anders. Forsgren, Philip E. Gill and Walter Murray: Computing Modified Newton Directions Using a Partial Cholesky Factorization, SIAM J. SCI. COMPUT. Vol. 16, No. 1, pp. 139-150

