1-d and n-d Functions

Copyright © Mathwrist LLC 2023

January 1, 2023

1-d Function Hierarchy

Function1D Base Class

- standard interface of 1-d functions.
- eval(), $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$
- integral(), $\int_{a}^{b} f(x) d x$
- option to use finite difference and Gaussian quadrature.

1-d Function Hierarchy (continued)

Piecewise Functions

- derived from Function1D
- piecewise constant
- piecewise linear (continuous)
- piecewise linear (non-continuous)
- B-spline

1-d Function Hierarchy (continued)

Chebyshev Approximation

- derived from Function1D
- linear combination of Chebyshev basis polynomials
- smooth
- 'mini-max' property

n-d Function Hierarchy

FunctionND Base Class

- standard interface of n-d functions.
- eval(), $f(\mathbf{x}), \nabla f(\mathbf{x})$ and $\nabla^{2} f(\mathbf{x})$
- integral(), $\iint f(\mathbf{x}) d \mathbf{x}$
- option to use finite difference to compute gradient and Hessian.

n-d Function Hierarchy (continued)

2-d Piecewise Functions

- derived from FunctionND but specific for 2-d.
- piecewise constant
- B-spline surface (tensor product of B-spline basis)
- bilinear surface (special case of B-spline, special handling)

n-d Function Hierarchy (continued)

Chebyshev Surface

- derived from FunctionND but specific for 2-d.
- tensor product of Chebyshev basis polynomials.
- nice properties due to Chebyshev basis polynomials.

1-d and n-d Functions (extended)

Client Functions

- derived from the common base classes, client supplied implementation.
- accepted anywhere in the library as 1-d or n-d functionals, i.e. root finding, optimization, etc.

Vector-valued Functions

VtrValueFunctionND

- base class as common interface
- $\mathbf{y}=F(\mathbf{x}), \mathbf{y}$ is $m \times 1$ and \mathbf{x} is $n \times 1$.
- client supplies implmentation to compute \mathbf{y} and Jacobian \mathbf{J}.
- option to use finite difference to compute J.
- mostly used for model calibration.

1-d Interpolation (generalized)

Cubic B-spline as Basis

- beyond natural or clamped spline, or Hermite interpolation polynomial.
- match any combination of $f\left(x_{i}\right), f^{\prime}\left(x_{i}\right)$ and $f^{\prime \prime}\left(x_{i}\right)$ at given data point x_{i}.
- automatic placement of B-spline knot points.

1-d Integration

Quadrature in General

- $\int_{a}^{b} f(x) d x=\sum_{k=0}^{n} w_{k} f\left(x_{k}\right), w_{k}=\int_{a}^{b} L_{n, k}(x) d x, L_{n, k}(x)$ is Lagrangian basis polynomial of degree n.
- trick is to partition $[a, b]$ to quadrature data points $\left\{x_{k}\right\}, k=0, \cdots, n$.

Adaptive Gaussian Quadrature

- better than Newton-Cotes family methods, i.e. trapezoidal, Simpson.
- better than composite Newton-Cotes methods or Romberg method in the sense of optimal placement of x_{k}.
- ensure accuracy in each sub interval, more points are placed if curvature dramatically changes.

1-d Root Finding

Root Finding In General

- bisection, Brent: guaranteed convergence but not so great on convergence rate.
- Newton: require $f^{\prime}(x)$, sencond order convergence rate, but not guaranteed to converge if x is far from solution x^{*}.
- Secant: same idea as Newton but approximate $f^{\prime}(x)$, superlinear rate, convergence not guaranteed.

Safeguared Newton

- combine the idea of Newton method with bisection.
- bracketing on the fly of trial Newton steps.
- tests based on fixed point iteration theorem: OK \rightarrow Newton mode, otherwise \rightarrow bisection mode.
- Newton mode: if $f^{\prime}(x)$ available, classic Newton step update, otherwise, predict from rational polynomial interpolation.

1-d Minization

Safeguarded Quadratic Approximation

- combine Golden section search with quadratic approximation.
- guaranteed convergence and second order convergence rate if x is close to solution x^{*}.
- initial bracketing mode and subsequent safeguarded mode.
- if $f^{\prime}(x)$ is available, evaluation at two points to construct the approximation, otherwise, evaluation at three points.

References I

[1] Richard L. Burden, Douglas J. Faires and Annette M. Burden: Numerical Analysis, 10th edition, Cengage Learning, 2016
[2] P. E. Gill, W. Murray and M. H. Wright: Practical Optimization, Emerald, first edition 2007
[3] Trevor Hastie, Robert Tibshirani and Jerome Friedman: The Elements of Statistical Learning, Springer, 2001
[4] P. M. Prenter: Splines and Variational Methods, Dover Publications, 2008
[5] Carl de Boor: A Practical Guide to Splines, Revised Edition, Applied Mathematical Sciences Volume 27, Springer, 2001
[6] John P. Boyd: Chebyshev and Fourier Spectral Methods, second edition (revised), Dover Publications, 2001

References II

[7] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang: Spectral Methods, Springer, 2006

