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Data and Model Fitting

Ordinary Linear Least Square
o linear model assumes y = x' 3 with model parameter j.

@ ordinary linear least square fit solves,
argmin (y — XB)" (y — X5)

, which is equivalently to solve X7 X3 = XTy

@ XTX is at least positive semi-definite, appropriate linear system
solvers are available in Mathwrist.
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Data and Model Fitting

Generalized Ridge Regression

@ alternatively and usually a better way of calibrating model parameter
B is to add a regularization term and solve,

arg min (y — XB)" (y — XB) + 287 Q8 (1)

, where A > 0 is a penalty factor and the regularization matrix € is
positive definite.

@ formulation (1) is also to solve a linear system,
(xTx + m) g=xTy
o if Q is identity, (1) is the standard ridge regression, hence (1)

sometimes is also called generalized ridge regression. Mathwrist
provides a function linear_fit::grr() to solve (1).
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Data and Model Fitting

Generalized Cross Validation (GCV)
@ penalty factor A\ could be an experimental choice.
@ GCV method computes the optimal A based on the data noise level.

@ write observation of linear model as y = X3 + ¢, GCV solves,

- _ 0 =HMW)yl?
arg min V() = T —HO)Z

, where H()\) is the unique symmetric influence matrix,
1
H(\) = X (xTx + )\Q) xT

o if parameter A < 0 is passed to function linear_fit::grr(), we use GCV
method to compute an optimal penalty factor.
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Data and Model Fitting

Linearly Constrained Linear Least Square
@ model parameter 5 maybe imposed to general linear constraints and
simple bounds.

@ Mathwrist provides a function linear_fit::lsq() to solve the following
linearly constrained linear least square problem,

arg ming (y — XB)T (y — XpB) s.t.
b < AB <b, and
I<pB<u (2)

, which effectively is a convex quadratic programming (QP) problem.
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Data and Model Fitting

Nonlinear Least Square

Given a nonlinear function y = h(x; ) with model parameter 5 and m
number of observations (y;,x;), i =0,--- ,m — 1, calibrate 5 by
minimizing the b norm of residual vector,

arg min ¥(8) = 5 (3) ©

, where the i-th element r;(5) = h(x;; 8) — yi. Let J(B) be the Jacobian
matrix of the residual vector r(3). The gradient and Hessian of ¥(53) are

3
i

Vy(8) = r(B)Vri(B) =37 (B)r(B) (4)

i

m—1
V() = JT(B)IB)+ D ri(B)V?ri(B) (5)
i=0

I
o
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Data and Model Fitting

Nonlinear Least Square: Gauss-Newton

@ approximate the true Hessian matrix in equation (5) by J(3)7J(3).

@ use a line search algorithm and iteratively computes a Newton search
direction p at each step,

J(B)TI(B)p = —V(B) = —IT(B)r(B)

o if the Jacobian matrix J(/3) has rank deficiency, it produces unstable
model calibration.

o if the residual r(f) is naturally large or non-negligible at certain point
of the calibration, ignoring the second term in equation (5) produces
incorrect search direction p.
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Data and Model Fitting

Nonlinear Least Square: Modified Gauss-Newton

@ at each iteration in the line search, compute SVD, J(3) = usv’.

@ the Newton direction p wrt the true Hessian solves
(s2vT+vTQ()) p = SF(B) (6)

, where Q(8) = S-5" ri(B)V2ri(B), #(8) = UTr(B).

@ let Sy be the leading submatrix of d number of dominant singulars in
S. Accordingly, let V4 be the first d columns of V, the principle
components.

o test whether /|r(/3)|c is small enough relative to the smallest
singulars in Sy. If so, we ignore Q(3) and write direction as
p = Vgpg. Let ¥4(3) be the first d elements of ¥(5) and solve
Spd = —Td(B)
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Data and Model Fitting

Nonlinear Least Square: Modified Gauss-Newton (continued)

e if Q(p) cannot be ignored, we approximate it by finite difference and
solve the direction p in the full space of V, p = Vp,

(s> +VTQ(B)V) b = ~SF(8) (7)

@ the second order term Q(3) could be indefinite. We use modified
Cholesky to solve equation (7). This is similar to the modified
Newton method in unconstrained optimization.
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Data and Model Fitting

Nonlinear Least Square: Levenberg-Marquardt

@ a special case of the trust region algorithm, uses J7(5)J(3) to
approximate the true Hessian (5).

@ at each trust region iteration, solve a sub problem

argminp” 37 (5)r(9) + 30T IT(B)I(E)p st ol < A (8)

@ p* is a solution of the trust region subproblem (8) if and only if
dX > 0 such that

Q@ (J7T(B)I(B) + Al) is positive semidefinite and
@ (IT(3)3(5) + ) p* = —JT(A)r(5) and
Q A(A—|ph=0

The first condition is automatically satisfied here.
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Data and Model Fitting

Nonlinear Least Square: Levenberg-Marquardt (continued)

@ write p(A) as a function of A computed from the second condition,

p() = — (I7(3)I(B) + M) 1T(B)r(8) (9)

o if [[p(A =0)|| < Ak, p(A = 0) is an exact solution of trust region sub
problem (8).
@ otherwise, we can always find a A € (0, 00) such that ||p(A\)]| = Ax.

@ perform QR decomposition J(5) = Q (g) Based on the idea in [1],

section 10.2, we can economically obtain an upper triangular Ry from
R such that

RIRy = (47(8)3(8) + \1)
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Data and Model Fitting

Nonlinear Least Square: Regularization and Constraints
@ in practice, it is often desired to regularize the model parameters 3
and perhaps impose additional constraints.
@ we offer a general nonlinear least square fit method that solves

argming ¥(8) = 3r(B)[3 + ABT QB st (10)
b, <A <b, and
1I<pB<u (11)
@ ) in (10) could be input or computed from GCV.
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Data and Model Fitting

Curve Fitting

GivenNa set of data points (x;, y;) observed from a unknown functionN

y = f(x), x; € [a, b] for i =0,---,m— 1, we want to approximates f(x)
by a smooth curve f(x;0) that is parameterized by 6.

f(x;0) as Linear Combination of Basis

Let 7 (x) = (do(x), -+, pn_1(x)) be a vector of n basis functions of
certain form. Let the curve approximation function f(x;0) = ¢(x)76 as a

linear combination of the basis vector and coefficient vector
07 = (60, ,0n-1).
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Data and Model Fitting

Curve Fitting: Choice of Basis
@ B-spline polynomials
o polynomial degree as user input, high degree not recommended, i.e.
above 6.

o knot points placement as user input, usually want data points
uniformally distributed to knot point intervals.

@ Chebyshev polynomial of the first kind

e polynomial degree as user input.
e suitable for the situation f(x) is naturally smooth.
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Data and Model Fitting

Curve Fitting: Formulation

@ construct a basis matrix ®(x) where the (7, j)-th element of the
matrix is ®; j(x) = ¢;j(x;). The sum of square of residuals (SSR) is

SSR = (y — ®(x)0)" (y — (x)0)
@ solve a regularized least square problem,

arg m@in (y — (x)0)" (y — ®(x)0) + 207 Q0 (12)

, where  in the regularization term penalizes the roughness of curve
f(x), penalty factor A > 0 could be a user input or computed by GCV.

@ alternatively, minimize curve roughness and subject to fitting error
constraints.

arg moin 07O st. —e < D(x)f—y < e (13)
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Data and Model Fitting

Curve Fitting: Shape Constraints

@ at given points x, € [a, b], k =0,--- , K, additional curve shape
constraints may be imposed to formulation (12) and (13).

I < F19D(x0) < ug,d =0,1,2 (14)

, where £(9)(x,; §) denotes the d-th derivative of f(x) wrt x.

@ shape constraints (14) effectively restrict the function value f(x; ),
slope f'(xk; 6) or curvature f”(xx; @) to be bounded within a certain
range.

o for example the classic natural cubic spline can be built by imposing
f"(a;0) =0 and f"(b; 0) = 0.
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Data and Model Fitting

Curve Fitting: Roughness Measure

@ the regularization matrix  in formulation (12) and (13) is to make
the curve function f(x; ) “smooth”.

@ if one chooses Q being the identity matrix, the roughness measure is
to reduce the k norm of basis coefficients ||4||3, which tends to

produce a flat curve close to f(x;0) = 0 as we increase the penalty
factor A — oo.
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Data and Model Fitting

Curve Fitting: Roughness Measure (derivative based)

@ classic definition, i.e. [4] chapter XIV, of the roughness measure of
curve function f(x; @) over [a, b] is

b
R(0) = / f(x; 0)%dx (15)
a
o we offer 4 levels of derivative-based roughness matrix construction,
b 2
R(0) = / (F0)) ded =0, .3
a

@ users make the choice on d, we internally carry out calculations to
write the roughness measure in the form of R(6) = 07 Q4.
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Data and Model Fitting

Curve Fitting: Roughness Measure (divided difference based)

@ the classic roughness measure (15) favorites small magnitude of
curvature, but does not have preference over the curvature sign
change.

@ we offer another set of regularization choices that penalize the divided
difference of derivatives,

2
R(O) =) (f(d)(xk; D= 9)> d=12

X — X
K k+1 k

, Where the index k traverses through the knot points for B-spline
basis and predefined points for Chebyshev basis.

@ users only need choose the level of d. We internally compute
R(0) = 07Q0.
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Data and Model Fitting

Curve Fitting: Roughness Measure (micro leverage)

o further, users can partition [a, b] into sub intervals (xo, X, - - -
and apply different roughness weights in different sub interval.

R(9) = ZW,/’Jrl f(d Xé?))zdx

@ the total roughness measure R(#) then is a weighted sum of local

roughness. The sub interval weights w = {w;} play the role as micro
leverage factors.

) Xk+1)

@ users set the leverage factors w through a piecewise constant function

w(x).
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Data and Model Fitting

Curve Fitting: nonlinear model

@ design a mathematical model g(x;0) = ¢(x) "6 as a smooth curve.

@ dependent variable y is connected to independent variable x by a
known nonlinear mapping function through the model, i.e.
y = f(g(x;0),x).

@ let r(6) be a vector-valued residual functions, where the i-th element
ri(0) = f(g(xi; 0), xi) — yi computes the residual error for observation
(xi, yi) given 6.
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Data and Model Fitting

Curve Fitting: nonlinear model (continued)

@ formulation (12) changes to the following regularized nonlinear least
square problem,
arg méin r(0)3 + \0T Q0 (16)

@ accordingly, formulation (13) now becomes to an nonlinear
programming problem,

arg main 07 Q0 s.t.

—e,-<r,-(c9)<e,'Vi:O,~-,m—1 (17)

@ additional curve shape constraint (14) may be imposed to both
formulation (16) and (17).
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Data and Model Fitting

Surface Fitting

Given N number of data points (xk, Y, zk), k =0,--- , N — 1, which are
observed from an unknown 2-dimensional function z = F(x,y) defined in
domain [a, b] x [c, d], we want to approximate f(x, y) by a smooth surface
function f(x,y; ©).

o

f(x,y;®) as Tensor Product of Basis

written as the tensor product of two sets of basis functions ¢(x) and ¥ (y),
f(x,y:0) = 6(x)TOu(y) (18)

, Where O is the coefficient matrix of the tensor product. The objective of
surface fitting is to recover © from observed data points.

o
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Data and Model Fitting

Surface Fitting: Choice of Basis
@ basis functions ¢(x) and ¥(y) are of the same type.
@ class SmoothSplineSurface uses B-spline as basis.
@ class SmoothBilinearSurface uses piecewise linear functions as basis.

@ class SmoothChebyshevSurface uses Chebyshev polynomial (first kind)
as basis.
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Data and Model Fitting

Surface Fitting: Formulation
@ regularized least square fit,

=
—

argmin ) (2 = £(@:xi, 1)) + AR(8)) (19)
0

>
I

, where R(©) is some choice of roughness regularization. A > 0 is the
roughness penalty factor from user input or computed by GCV
method.

@ alternatively, directly minimize the roughness measure subject to
bounded fitting error constraints.

arg ming R(©) s.t.
—€ < (O Xk, yk) — zx < €,k (20)
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Data and Model Fitting

Surface Fitting: Shape Constraints

In both formulation (19) and (20), it is possible to further impose
constraints to given points (xk, yx). The supported constraint types are:

e Function value f(xk, Yk, ©) is bounded;
o Partial delta 5 O f(xk, yk, ®) or %f(xk,yk, ) is bounded;

e Gamma %f(xk,yk,e) or %f(xk,yk,e) is bounded;

@ Cross gamma %;yf(xk,yk,e) is bounded;
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Data and Model Fitting

Surface Fitting: Shape Constraints (continued)

Let 6(7%)(f(x, y; ©)) be the derivative operator relevant to the supported
constraint types, i.e. 6(%0 for function value, 6(1:0) for partial delta %.
The optimization problem (19) and (20) may be subject to additional

surface shape constraints,

le < 60 (F (X, yie; ©)) < ui, Yk (21)

v
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Data and Model Fitting

Surface Fitting: Roughness Measure
@ Frobenius norm, equivalent to the b norm in curve fitting.

@ Dirichlet energy, defined as the square integral of the gradient norm,

b d
R(e):/a / V£ (x, y; ©)|Pdydx

@ Thin-plate energy, a rotation-invariant measure defined as R(@) =

b ,d
/ / (Vaxf(x,y; ©) + 2V, f(x, y; @) + V,, f(x, y; ©)?) dydx

v
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Data and Model Fitting

Surface Fitting: Roughness Measure (micro leverage)
@ Users can partition the whole surface domain [a, b] x [c, d] into sub
areas [Xivxi-l-l] X [yJ'7yJ'+1]' i1=0,--- 7kv ./ =0,--- 7’ and SUPP'Y a 2-d
piecewise constant function w(x, y) to surface fitting.

@ Internally, we compute the total roughness measure as the weighted
sum of roughness over those sub surface areas.

P
R(©;a,b,c,d) = ZZ w; jR(©; Xi, Xi 41, Yj, Yj+1)
i=0 j=0

, where w; j = w(x, y),V(x,y) € [xi,xi+1] x [y}, Yj+1].
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Data and Model Fitting

Surface Fitting: nonlinear model
@ design a model g(x, y; ®) as a smooth surface.

@ a known 2-d nonlinear mapping function z = f(g(x, y; @), x,y)

connects independent variables (x, y) to function value z through the
model.

@ let r(©) be the vector of residual functions where the i-th element

ri(®) = f(g(xi, yi; ©), x;, yi) — zi is the residual error for observation
(Xi7 Yis Z,‘)-
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Data and Model Fitting

Surface Fitting: nonlinear model (continued)
Users can choose to calibrate surface model parameter @ by

@ a regularized nonlinear least square fit,
arg m@in r(©)]3 + AR(O) (22)
@ or by solving an nonlinear programming problem,
argming R(@)  s.t.
—6<r(@®)<e Vi=0,---,m—1 (23)

Again, in both formulation (22) and (23), additional shape constraints
(21) can be imposed.
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