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Data and Model Fitting

Ordinary Linear Least Square

linear model assumes y = xTβ with model parameter β.

ordinary linear least square fit solves,

argmin
β

(y − Xβ)T (y − Xβ)

, which is equivalently to solve XTXβ = XTy

XTX is at least positive semi-definite, appropriate linear system
solvers are available in Mathwrist.

(Copyright©Mathwrist LLC 2023) Mathwrist Presentation Series January 25, 2023 2 / 32



Data and Model Fitting

Generalized Ridge Regression

alternatively and usually a better way of calibrating model parameter
β is to add a regularization term and solve,

argmin
β

(y − Xβ)T (y − Xβ) + λβTΩβ (1)

, where λ > 0 is a penalty factor and the regularization matrix Ω is
positive definite.

formulation (1) is also to solve a linear system,(
XTX+ λΩ

)
β = XTy

if Ω is identity, (1) is the standard ridge regression, hence (1)
sometimes is also called generalized ridge regression. Mathwrist
provides a function linear fit::grr() to solve (1).
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Data and Model Fitting

Generalized Cross Validation (GCV)

penalty factor λ could be an experimental choice.

GCV method computes the optimal λ based on the data noise level.

write observation of linear model as y = Xβ + ϵ, GCV solves,

argmin
λ

V (λ) =
∥(I−H(λ))y∥2

Tr(I−H(λ))2

, where H(λ) is the unique symmetric influence matrix,

H(λ) = X
(
XTX+ λΩ

)−1
XT

if parameter λ ≤ 0 is passed to function linear fit::grr(), we use GCV
method to compute an optimal penalty factor.
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Data and Model Fitting

Linearly Constrained Linear Least Square

model parameter β maybe imposed to general linear constraints and
simple bounds.

Mathwrist provides a function linear fit::lsq() to solve the following
linearly constrained linear least square problem,

argminβ (y − Xβ)T (y − Xβ) s.t.
bl ≤ Aβ ≤ bu and

l ≤ β ≤ u (2)

, which effectively is a convex quadratic programming (QP) problem.
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Data and Model Fitting

Nonlinear Least Square

Given a nonlinear function y = h(x;β) with model parameter β and m
number of observations (yi , xi ), i = 0, · · · ,m − 1, calibrate β by
minimizing the l2 norm of residual vector,

argmin
β
ψ(β) =

1

2
∥r(β)∥22 (3)

, where the i-th element ri (β) = h(xi ;β)− yi . Let J(β) be the Jacobian
matrix of the residual vector r(β). The gradient and Hessian of ψ(β) are

∇ψ(β) =
m−1∑
i=0

ri (β)∇ri (β) = JT (β)r(β) (4)

∇2ψ(β) = JT (β)J(β) +
m−1∑
i=0

ri (β)∇2ri (β) (5)
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Data and Model Fitting

Nonlinear Least Square: Gauss-Newton

approximate the true Hessian matrix in equation (5) by J(β)TJ(β).

use a line search algorithm and iteratively computes a Newton search
direction p at each step,

J(β)TJ(β)p = −∇ψ(β) = −JT (β)r(β)

if the Jacobian matrix J(β) has rank deficiency, it produces unstable
model calibration.

if the residual r(β) is naturally large or non-negligible at certain point
of the calibration, ignoring the second term in equation (5) produces
incorrect search direction p.
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Data and Model Fitting

Nonlinear Least Square: Modified Gauss-Newton

at each iteration in the line search, compute SVD, J(β) = USVT .

the Newton direction p wrt the true Hessian solves(
S2VT + VTQ(β)

)
p = −Sr̄(β) (6)

, where Q(β) =
∑m−1

i=0 ri (β)∇2ri (β), r̄(β) = UT r(β).

let Sd be the leading submatrix of d number of dominant singulars in
S. Accordingly, let Vd be the first d columns of V, the principle
components.

test whether
√
|r(β)|∞ is small enough relative to the smallest

singulars in Sd . If so, we ignore Q(β) and write direction as
p = Vdpd . Let r̄d(β) be the first d elements of r̄(β) and solve
Spd = −r̄d(β)
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Data and Model Fitting

Nonlinear Least Square: Modified Gauss-Newton (continued)

if Q(β) cannot be ignored, we approximate it by finite difference and
solve the direction p in the full space of V, p = Vp̄,(

S2 + VTQ(β)V
)
p̄ = −Sr̄(β) (7)

the second order term Q(β) could be indefinite. We use modified
Cholesky to solve equation (7). This is similar to the modified
Newton method in unconstrained optimization.
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Data and Model Fitting

Nonlinear Least Square: Levenberg-Marquardt

a special case of the trust region algorithm, uses JT (β)J(β) to
approximate the true Hessian (5).

at each trust region iteration, solve a sub problem

argmin
p

pTJT (β)r(β) +
1

2
pTJT (β)J(β)p, s.t. ∥p∥ ≤ ∆k (8)

p∗ is a solution of the trust region subproblem (8) if and only if
∃λ ≥ 0 such that

1
(
JT (β)J(β) + λI

)
is positive semidefinite and

2
(
JT (β)J(β) + λI

)
p∗ = −JT (β)r(β) and

3 λ (∆− ∥p∗∥) = 0

The first condition is automatically satisfied here.
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Data and Model Fitting

Nonlinear Least Square: Levenberg-Marquardt (continued)

write p(λ) as a function of λ computed from the second condition,

p(λ) = −
(
JT (β)J(β) + λI

)−1
JT (β)r(β) (9)

if ∥p(λ = 0)∥ < ∆k , p(λ = 0) is an exact solution of trust region sub
problem (8).

otherwise, we can always find a λ ∈ (0,∞) such that ∥p(λ)∥ = ∆k .

perform QR decomposition J(β) = Q

(
R
0

)
. Based on the idea in [1],

section 10.2, we can economically obtain an upper triangular Rλ from
R such that

RT
λ Rλ =

(
JT (β)J(β) + λI

)
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Data and Model Fitting

Nonlinear Least Square: Regularization and Constraints

in practice, it is often desired to regularize the model parameters β
and perhaps impose additional constraints.

we offer a general nonlinear least square fit method that solves

argminβ ψ(β) =
1
2∥r(β)∥

2
2 + λβTΩβ s.t. (10)

bl ≤ Aβ ≤ bu and
l ≤ β ≤ u (11)

λ in (10) could be input or computed from GCV.
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Data and Model Fitting

Curve Fitting

Given a set of data points (xi , yi ) observed from a unknown function
y = f̃ (x), xi ∈ [a, b] for i = 0, · · · ,m − 1, we want to approximates f̃ (x)
by a smooth curve f (x ; θ) that is parameterized by θ.

f (x ; θ) as Linear Combination of Basis

Let ϕT (x) = (ϕ0(x), · · · , ϕn−1(x)) be a vector of n basis functions of
certain form. Let the curve approximation function f (x ; θ) = ϕ(x)T θ as a
linear combination of the basis vector and coefficient vector
θT = (θ0, · · · , θn−1).
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Data and Model Fitting

Curve Fitting: Choice of Basis

B-spline polynomials

polynomial degree as user input, high degree not recommended, i.e.
above 6.
knot points placement as user input, usually want data points
uniformally distributed to knot point intervals.

Chebyshev polynomial of the first kind

polynomial degree as user input.
suitable for the situation f̃ (x) is naturally smooth.
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Data and Model Fitting

Curve Fitting: Formulation

construct a basis matrix Φ(x) where the (i , j)-th element of the
matrix is Φi ,j(x) = ϕj(xi ). The sum of square of residuals (SSR) is

SSR = (y −Φ(x)θ)T (y −Φ(x)θ)

solve a regularized least square problem,

argmin
θ

(y −Φ(x)θ)T (y −Φ(x)θ) + λθTΩθ (12)

, where Ω in the regularization term penalizes the roughness of curve
f (x), penalty factor λ > 0 could be a user input or computed by GCV.

alternatively, minimize curve roughness and subject to fitting error
constraints.

argmin
θ
θTΩθ s.t.− ϵ < Φ(x)θ − y < ϵ (13)
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Data and Model Fitting

Curve Fitting: Shape Constraints

at given points xk ∈ [a, b], k = 0, · · · ,K , additional curve shape
constraints may be imposed to formulation (12) and (13).

lk ≤ f (d)(xk ; θ) ≤ uk , d = 0, 1, 2 (14)

, where f (d)(xk ; θ) denotes the d-th derivative of f (x) wrt x .

shape constraints (14) effectively restrict the function value f (xk ; θ),
slope f ′(xk ; θ) or curvature f ′′(xk ; θ) to be bounded within a certain
range.

for example the classic natural cubic spline can be built by imposing
f ′′(a; θ) = 0 and f ′′(b; θ) = 0.
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Data and Model Fitting

Curve Fitting: Roughness Measure

the regularization matrix Ω in formulation (12) and (13) is to make
the curve function f (x ; θ) “smooth”.

if one chooses Ω being the identity matrix, the roughness measure is
to reduce the l2 norm of basis coefficients ∥θ∥22, which tends to
produce a flat curve close to f (x ; θ) = 0 as we increase the penalty
factor λ→ ∞.
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Data and Model Fitting

Curve Fitting: Roughness Measure (derivative based)

classic definition, i.e. [4] chapter XIV, of the roughness measure of
curve function f (x ; θ) over [a, b] is

R(θ) =

∫ b

a
f ′′(x ; θ)2dx (15)

we offer 4 levels of derivative-based roughness matrix construction,

R(θ) =

∫ b

a

(
f (d)(x ; θ)

)2
dx , d = 0, · · · , 3

users make the choice on d , we internally carry out calculations to
write the roughness measure in the form of R(θ) = θTΩθ.
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Data and Model Fitting

Curve Fitting: Roughness Measure (divided difference based)

the classic roughness measure (15) favorites small magnitude of
curvature, but does not have preference over the curvature sign
change.

we offer another set of regularization choices that penalize the divided
difference of derivatives,

R(θ) =
∑
k

(
f (d)(xk ; θ)− f (d)(xk+1; θ)

xk+1 − xk

)2

, d = 1, 2

, where the index k traverses through the knot points for B-spline
basis and predefined points for Chebyshev basis.

users only need choose the level of d . We internally compute
R(θ) = θTΩθ.
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Data and Model Fitting

Curve Fitting: Roughness Measure (micro leverage)

further, users can partition [a, b] into sub intervals (x0, x1, · · · , xk+1)
and apply different roughness weights in different sub interval.

R(θ) =
k∑

i=0

wi

∫ xi+1

xi

(
f (d)(x ; θ)

)2
dx

the total roughness measure R(θ) then is a weighted sum of local
roughness. The sub interval weights w = {wi} play the role as micro
leverage factors.

users set the leverage factors w through a piecewise constant function
w(x).

(Copyright©Mathwrist LLC 2023) Mathwrist Presentation Series January 25, 2023 20 / 32



Data and Model Fitting

Curve Fitting: nonlinear model

design a mathematical model g(x ; θ) = ϕ(x)T θ as a smooth curve.

dependent variable y is connected to independent variable x by a
known nonlinear mapping function through the model, i.e.
y = f (g(x ; θ), x).

let r(θ) be a vector-valued residual functions, where the i-th element
ri (θ) = f (g(xi ; θ), xi )− yi computes the residual error for observation
(xi , yi ) given θ.
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Data and Model Fitting

Curve Fitting: nonlinear model (continued)

formulation (12) changes to the following regularized nonlinear least
square problem,

argmin
θ

|r(θ)|22 + λθTΩθ (16)

accordingly, formulation (13) now becomes to an nonlinear
programming problem,

argmin
θ
θTΩθ s.t.

−ϵi < ri (θ) < ϵi∀i = 0, · · · ,m − 1 (17)

additional curve shape constraint (14) may be imposed to both
formulation (16) and (17).
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Data and Model Fitting

Surface Fitting

Given N number of data points (xk , yk , zk), k = 0, · · · ,N − 1, which are
observed from an unknown 2-dimensional function z = f̃ (x , y) defined in
domain [a, b]× [c, d ], we want to approximate f̃ (x , y) by a smooth surface
function f (x , y ;Θ).

f (x , y ;Θ) as Tensor Product of Basis

written as the tensor product of two sets of basis functions ϕ(x) and ψ(y),

f (x , y ;Θ) = ϕ(x)TΘψ(y) (18)

, where Θ is the coefficient matrix of the tensor product. The objective of
surface fitting is to recover Θ from observed data points.
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Data and Model Fitting

Surface Fitting: Choice of Basis

basis functions ϕ(x) and ψ(y) are of the same type.

class SmoothSplineSurface uses B-spline as basis.

class SmoothBilinearSurface uses piecewise linear functions as basis.

class SmoothChebyshevSurface uses Chebyshev polynomial (first kind)
as basis.

(Copyright©Mathwrist LLC 2023) Mathwrist Presentation Series January 25, 2023 24 / 32



Data and Model Fitting

Surface Fitting: Formulation

regularized least square fit,

argmin
Θ

N−1∑
k=0

(zk − f (Θ; xk , yk))
2 + λR(Θ)) (19)

, where R(Θ) is some choice of roughness regularization. λ > 0 is the
roughness penalty factor from user input or computed by GCV
method.

alternatively, directly minimize the roughness measure subject to
bounded fitting error constraints.

argminΘ R(Θ) s.t.
−ϵ < f (Θ; xk , yk)− zk < ϵ,∀k (20)
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Data and Model Fitting

Surface Fitting: Shape Constraints

In both formulation (19) and (20), it is possible to further impose
constraints to given points (xk , yk). The supported constraint types are:

Function value f (xk , yk ,Θ) is bounded;

Partial delta ∂
∂x f (xk , yk ,Θ) or ∂

∂y f (xk , yk ,Θ) is bounded;

Gamma ∂2

∂2x
f (xk , yk ,Θ) or ∂2

∂2y
f (xk , yk ,Θ) is bounded;

Cross gamma ∂2

∂x∂y f (xk , yk ,Θ) is bounded;
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Data and Model Fitting

Surface Fitting: Shape Constraints (continued)

Let δ(r ,s)(f (x , y ;Θ)) be the derivative operator relevant to the supported
constraint types, i.e. δ(0,0) for function value, δ(1,0) for partial delta ∂

∂x .
The optimization problem (19) and (20) may be subject to additional
surface shape constraints,

lk ≤ δ(rk ,sk )(f (xk , yk ;Θ)) ≤ uk ,∀k (21)
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Data and Model Fitting

Surface Fitting: Roughness Measure

Frobenius norm, equivalent to the l2 norm in curve fitting.

Dirichlet energy, defined as the square integral of the gradient norm,

R(Θ) =

∫ b

a

∫ d

c
∥∇f (x , y ;Θ)∥2dydx

Thin-plate energy, a rotation-invariant measure defined as R(Θ) =∫ b

a

∫ d

c

(
∇xx f (x , y ;Θ)2 + 2∇xy f (x , y ;Θ)2 +∇yy f (x , y ;Θ)2

)
dydx
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Surface Fitting: Roughness Measure (micro leverage)

Users can partition the whole surface domain [a, b]× [c , d ] into sub
areas [xi , xi+1]× [yj , yj+1], i = 0, · · · , k , j = 0, · · · , l and supply a 2-d
piecewise constant function w(x , y) to surface fitting.

Internally, we compute the total roughness measure as the weighted
sum of roughness over those sub surface areas.

R(Θ; a, b, c , d) =
k∑

i=0

l∑
j=0

wi ,jR(Θ; xi , xi+1, yj , yj+1)

, where wi ,j = w(x , y),∀(x , y) ∈ [xi , xi+1]× [yj , yj+1].
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Surface Fitting: nonlinear model

design a model g(x , y ;Θ) as a smooth surface.

a known 2-d nonlinear mapping function z = f (g(x , y ;Θ), x , y)
connects independent variables (x , y) to function value z through the
model.

let r(Θ) be the vector of residual functions where the i-th element
ri (Θ) = f (g(xi , yi ;Θ), xi , yi )− zi is the residual error for observation
(xi , yi , zi ).
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Surface Fitting: nonlinear model (continued)

Users can choose to calibrate surface model parameter Θ by

a regularized nonlinear least square fit,

argmin
Θ

|r(Θ)|22 + λR(Θ) (22)

or by solving an nonlinear programming problem,

argminΘ R(Θ) s.t.

−ϵi < ri (Θ) < ϵi ∀i = 0, · · · ,m − 1 (23)

Again, in both formulation (22) and (23), additional shape constraints
(21) can be imposed.
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