Differential Equations

Copyright © Mathwrist LLC 2023

September 28, 2023

Ordinary Differential Equation

- A smooth function $y(t)$ governed by $y^{\prime}(t)=f(t, y(t)), t \in[0, T]$
- $f(t, y(t))$ is continuous and satisfies Lipschitz condition wrt y,
- $y(t)$ has a unique solution for $0 \leq t \leq T$, given initial value $y(0)=y_{0}$.
- Numerical solutions, generate approximation u_{i} of $y\left(t_{i}\right)$ over a sequence of time steps, $t_{i}, i=0, \cdots, N$ with $u_{0}=y_{0}$.

Ordinary Differential Equation

Explicit Methods

- Euler's method:

$$
u_{i+1}=u_{i}+h \phi\left(t_{i}, u_{i}\right), h=t_{i+1}-t_{i}
$$

, one step method, global relative error $\mathcal{O}(h)$.

- Runge-Kutta methods: high order accurate 1 -step methods, multiple evaluations of $f\left(t_{i}+\Delta t, u_{i}+k\right)$ for some $\Delta t \in[0, h]$ and some shock amount k, infeasible in practice when $f(t, y(t))$ is availabe only on exact grid points t_{i}.

Ordinary Differential Equation

Explicit Methods (continued)

- Multiple step methods:

$$
\begin{aligned}
u_{i+1}= & \alpha_{m} u_{i}+\alpha_{m-1} u_{i-1}+\cdots+ \\
& h\left[\beta_{m} f\left(t_{i}, u_{i}\right)+\beta_{m-1}\left(t_{i-1}, u_{i-i}\right)+\cdots+\beta_{0} f\left(t_{i-m}, u_{i-m}\right)\right]
\end{aligned}
$$

- Examples: Adams-Bashforth methods, Adams-Moulton methods.
- $f(t, y(t))$ is evaluated exactly on grid points and computed only once at each t_{i}.
- Stability issue when h is not fine enough.
- Excellent choice for smooth problems.

Ordinary Differential Equation

Classic Iterative Deferred Correction (IDeC)

- Consider using a base ODE method to obtain d-th order accurate approximation $u^{(d)}\left(t_{i}\right)$ of $y\left(t_{i}\right)$.
- Construct a smooth interpolation function $L(t)$ passing through $p+1$ number of points $\left(u_{i-p}^{(d)}, \cdots, u_{i}^{(d)}\right)$.
- The error function $e(t)=y(t)-L(t)$ then satisfies the ODE

$$
e^{\prime}(t)=f(t, y(t))-L^{\prime}(t)
$$

- We again solve $e(t)$ using Euler's method

$$
e_{i}=e_{i-1}+h\left[f\left(t_{i-1}, u_{i-1}^{(d)}+e_{i-1}\right)-L^{\prime}\left(t_{i-1}\right)\right]
$$

Ordinary Differential Equation

Classic IDeC (continued)

- Adding e_{i} to $u_{i}^{(d)}$ and obtain $\mathcal{O}\left(h^{d+1}\right)$ accurate $u_{i}^{(d+1)}=e_{i}+u_{i}^{(d)}$
- Repeat q number error correction iterations to raise the accuracy order to $\mathcal{O}\left(h^{d+q}\right)$.
- Mathwrist NPL uses Lagrange interpolation polynomial $L(t)$ and restricts $3<p<7$.
- The number of IDeC iterations $q<p$. Extra iterations no longer increase accuracy.
- Mathwrist NPL uses Euler's method or Adams-Bashforth 3-step method as the base method.

Ordinary Differential Equation

Spectral IDec Method

- Rewrite ODE initial value problem in an integral equation form,

$$
y(t)=y_{0}+\int_{0}^{t} f(s, y(s)) d s
$$

- Obtain d-th order accurate approximation $u^{(d)}(t)$ from a base method.
- Define a residual function:

$$
\epsilon(t)=y_{0}+\int_{0}^{t} f\left(s, u^{(d)}(s)\right) d s-u^{(d)}(t)
$$

Ordinary Differential Equation

Spectral IDec Method (continued)

- Error function $e(t)=y(t)-u^{(d)}$ then can be expressed as a Picard integral equation

$$
\begin{aligned}
e(t) & =\int_{0}^{t} g(s, e(s)) d s+\epsilon(t) \\
g(t, e(t)) & =f\left(t, u^{(d)}(t)+e(t)\right)-f\left(t, u^{(d)}(t)\right)
\end{aligned}
$$

- Solve $e(t)$ i.e. from explicit Euler's method as

$$
e_{i}=e_{i-1}+g\left(t_{i-1}, e_{i-1}\right) \Delta t_{i}+\epsilon_{i}-\epsilon_{i-1}
$$

, where ϵ_{i} is computed from Gaussian quadrature.

- Mathwrist NPL uses a Legendre polynomial of degree p to compute the quadrature, which has $2 p-2$ order accuracy on $\epsilon(t)$.

Ordinary Differential Equation

Implicit IDec Method

- Explicit ODE methods need use small enough step size h to retain numerical stability.
- For stiff problems, h could be extremely small.
- A n-dimensional system of ODE is linear if

$$
y^{\prime}(t)=\mathbf{A}(t) y(t)+s(t)
$$

, where $\mathbf{A}(t)$ is a $n \times n$ matrix. If the source function $s(t)=0$, the system is homogeneous.

- The system is stable if all eigen values of $\mathbf{A}(t)$ are negative.

Ordinary Differential Equation

Implicit IDec Method (continued)

- Using implicit Euler's method as the base method i.e. in a classic IDeC,

$$
\mathbf{y}_{i+1}=\mathbf{y}_{i}+h\left[\mathbf{A}_{i+1} \mathbf{y}_{i+1}+\mathbf{s}_{i+1}\right]
$$

- This is to solve a linear system

$$
\left[\mathbf{I}-h \mathbf{A}_{i+1}\right] \mathbf{y}_{i+1}=\mathbf{y}_{i}+h \mathbf{s}_{i+1}
$$

- Since all eigen values of $\mathbf{A}(t)$ are negative, the implicit Euler is unconditionally stable, hence renders relatively large step size h.
- Mathwrist NPL offers implicit Euler's method combined with classic IDeC or spectral IDeC.

Parabolic Partial Differential Equation

- A 2-d smooth function $v(t, x)$ in a rectangle area $(t, x) \in(a, b) \times(0, T)$ governed by parabolic PDE,

$$
\begin{equation*}
\frac{\partial v}{\partial t}=f(t, x) \frac{\partial^{2} v}{\partial x^{2}}+g(t, x) \frac{\partial v}{\partial x}+h(t, x) v+s(t, x) \tag{1}
\end{equation*}
$$

- Conveniently, introduce spatial derivative operator $\mathcal{A}(v)$ and express the PDE in an ODE form,

$$
\begin{equation*}
\frac{\partial v}{\partial t}=\mathcal{A}(v)+s(t, x) \tag{2}
\end{equation*}
$$

- The PDE is linear because coefficient functions $f(t, x), g(t, x)$ and $h(t, x)$ do NOT dependent on $v(t, x)$.
- It is homogeneous when the source function $s(t, x)=0$.
- For a well-posed problem, $f(t, x)>0$.

Parabolic Partial Differential Equation

Initial Value and Boundary Condition

- Given initial value $v(0, x)=u(x)$, PDE (1) has a unique solution subject to appropriate boundary conditions:
(1) Dirichlet:

$$
v\left(t, x_{b}\right)=u_{b c}(t)
$$

(2) Neumann:

$$
\frac{\partial v}{\partial x}\left(t, x_{b}\right)=u_{b c}(t)
$$

(3) Robin: a linear combination of Dirichlet and Neumann.

$$
\alpha v\left(t, x_{b}\right)+\beta \frac{\partial v}{\partial x}\left(t, x_{b}\right)=u_{b c}(t)
$$

, where x_{b} is the boundary state a or b for some given function $u_{b c}(t)$.

- Other boundary conditions lead to no solution.

Parabolic Partial Differential Equation

Finite Difference Method

- Consider a mesh $\left\{t_{l}, I=0, \cdots, N\right\} \times\left\{x_{j}, j=0, \cdots, J\right\}$ that is uniformly discretized in the spatial dimension,
- Denote function values at $\left(t_{l}, x_{j}\right)$ with subscript (I, j), e.g. $f_{l, j}=f\left(t_{l}, x_{j}\right)$,
- Approximate $\frac{\partial v}{\partial t}, \frac{\partial v}{\partial x}$ and $\frac{\partial^{2} v}{\partial x^{2}}$ by finite difference,
- At mesh grid points, PDE (1) becomes to a difference equation in terms of nodal values $v_{l, j}$ that approximates $v\left(t_{l}, x_{j}\right)$.
- Numerical solution is obtained by sloving all nodal values $v_{l, j}$ simultaneously to satisfy the difference equation.

Parabolic Partial Differential Equation

Crank-Nicolson Method

- Crank-Nicolson uses 3-point center-difference scheme in spatial dimension,

$$
\begin{aligned}
\left.\frac{\partial v}{\partial x}\right|_{t=t_{l}, x=x_{j}} & =\frac{v_{l, j+1}-v_{l, j-1}}{2 \Delta x} \\
\left.\frac{\partial^{2}}{\partial x^{2}}\right|_{t=t_{l}, x=x_{j}} & =\frac{v_{l, j+1}-2 v_{l, j}+v_{l, j-1}}{\Delta x^{2}}
\end{aligned}
$$

- Along time dimension,

$$
\begin{aligned}
\left.\frac{\partial v}{\partial t}\right|_{t=t_{l}, x=x_{j}} & =\frac{v_{l+1, j}-v_{l, j}}{\Delta t}=\frac{1}{2}\left(w_{l+1, j}+s_{l+1, j}\right)+\frac{1}{2}\left(w_{l, j}+s_{l, j}\right) \\
w_{l, j}= & \left.f_{l, j} \frac{\partial^{2}}{\partial x^{2}}\right|_{t=t_{l, x=x_{j}}}+\left.g_{l, j} \frac{\partial v}{\partial x}\right|_{t=t_{l}, x=x_{j}}+h_{l, j}
\end{aligned}
$$

Parabolic Partial Differential Equation

Crank-Nicolson (continued)

- PDE (1) becomes to

$$
\begin{gathered}
\frac{v_{l+1, j}}{\Delta t}-\frac{1}{2} L_{l+1, j}=\frac{v_{l, j}}{\Delta t}+\frac{1}{2} L_{l, j}+\frac{1}{2}\left[s_{l+1, j}+s_{l, j}\right] \\
L_{l, j}=f_{l, j} \frac{v_{l, j+1}-2 v_{l, j}+v_{l, j-1}}{\Delta x^{2}}+g_{l, j} \frac{v_{l, j+1}-v_{l, j-1}}{2 \Delta x}+h_{l, j} v_{l, j}
\end{gathered}
$$

- At boundary states x_{0} and x_{J}, spatial derivatives involve "ghost" point x_{-1} and x_{J+1}, imply nodal values at ghost points from boundary conditions, i.e. for Robin boundary condition,

$$
v_{l,-1}=\frac{2 \alpha_{1} \Delta x}{\beta_{1}} v_{l, 0}+v_{l, 1}-\frac{2 \Delta x}{\beta_{1}} u_{1}\left(t_{l}\right)
$$

Parabolic Partial Differential Equation

Crank-Nicolson (continued)

- Solve a $(J+1) \times(J+1)$ tridiagonal linear system at each time marching step.

$$
\mathbf{B}_{l+1} v_{l+1}=\mathbf{A}_{l} v_{l}+\mathbf{s}
$$

- Second order accuracy $\mathcal{O}\left(h^{2}\right)$ and $\mathcal{O}\left(\Delta x^{2}\right)$ in both time and states.
- Unconditionally stable.
- Handle non-smooth (even non-differentiable) initial value function $v(0, x)=u(x)$.
- To improve accuracy, Mathwrist NPL allows users to set an initial smoothing time $0<s<T$. We internally will start with a 4-th order accurate finite difference method to smooth $v(t, x)$ out to time s and then switch back to Crank-Nicolson method.

Parabolic Partial Differential Equation

Spectral Collocation Method

- Approximate $v(t, x)$ by a degree- n approximation polynomial $u(t, x)$ in terms of orthogonal basis polynomials (Mathwrist NPL uses Chebyshev basis polynomials),

$$
\begin{aligned}
u(t, x) & =\sum_{k=0}^{n} a_{k}(t) T_{k}(x), k=0, \cdots, n \\
T_{k}(x) & =\cos \left(k \cos ^{-1} x\right)
\end{aligned}
$$

- We then require

$$
\begin{equation*}
\left.\frac{\partial}{\partial t} u\right|_{x=x_{j}}=\mathcal{A}(u)+s\left(t, x_{j}\right) \tag{3}
\end{equation*}
$$

, at some representative node points $x_{j} \in[a, b]$, known as collocation points.

Parabolic Partial Differential Equation

Spectral Collocation Method (continued)

- For Chebyshev basis polynomials, x_{j} are choosen to be the extreme points of $T_{n}(x), x_{j}=\cos \frac{\pi j}{n}, j=0, \cdots, n$.
- Collocation equation (3) then is n-dimensional system of linear ODE.
- Mathwrist NPL solves this ODE system using implicit spectral IDeC method.
- When $v(t, x)$ is a very smooth function in states, spectral collocation method outperforms all other methods. It doesn't work well if not so.
- It doesn't work for non-smooth or non-differentiable initial value functions.
- However, we allow users to set an initial smoothing time $0<s<T$ and use a 4-th order accurate finite difference method to smooth $v(t, x)$ to s.

Parabolic Partial Differential Equation

Method of Lines

- Method of lines refer to the technique of solving PDE (1) by solving a system of ODE (3).
- Spectral collocation method falls into this category.
- Alternatively, we can approximate $\mathcal{A}(u)$ using finite difference.
- Mathwrist NPL provides a 2nd order and a 4th order accurate finite difference method, and then solve (3) by implicit classic IDeC.
- The 2nd order finite difference scheme is exactly same as Crank-Nicolson.

Parabolic Partial Differential Equation

Method of Lines (continued)

- The 4th order finite difference scheme uses 5-point center difference at interior nodes, $x_{j}, j=2, \cdots, J-2$.
- At near-boundary nodes, x_{1} and x_{J-1}, alternative high order finite difference formula is used.
- Boundary nodes x_{0} and x_{J} are governed by boundary conditions.
- Only interior nodes x_{1}, \cdots, x_{J-1} are solved from the ODE by implicit IDeC.
- At each step, we solve a banded diagonal linear system of bandwidth 5 .
- When required, we use this 4th order accurate method of lines to smooth out initial values for all other PDE solvers.

Parabolic Partial Differential Equation

Events and Resets

- Apart from the initial smoothing time, Mathwrist PDE solvers also support events and resets.
- Users can specify a list of events. We ensure PDE marching steps will stop at those events.
- Users can instruct a solver that $v(t, x)$ needs be reset at each time marching step. We ensure $v(t, x)$ is updated by calling user supplied callback function.
- Our API function is designed not only to take initial values, but also serve as callbacks at events and resets.
- Updated $v(t, x)$ then becomes the new initial value to continue the process.

References I

[1] Richard L. Burden, J. Douglas Faires and Annette M. Burden: Numerical Analysis, 10th edition, Cengage Learning, 2016
[2] Pedro E. Zadunaisky: On the Estimation of Errors Propagated in the Numerical Integration of Ordinary Differential Equations, Numer. Math. 27, 21 - 39 (1976), Springer-Verlag 1976
[3] Alok Dutt, Leslie Greengard, Vladimir Rokhlin: Spectral Deferred Correction Methods for Ordinary Differential Equations, BIT, 40(2):241-266, 2000
[4] Anders C. Hansen, John Strain: On the Order of Deferred Correction, Applied Numerical Mathematics, Volume 61, Issue 8, August 2011, Pages 961-973
[5] C. Canuto, M.Y. Hussaini, A. Quarteroni and T. A. Zang: Spectral Methods, Fundamentals in Single Domains, Springer, 2006

References II

[6] John P. Boyd: Chebyshev and Fourier Spectral Methods, Dover, 2nd edition, 2016
[7] J. W. Thomas: Numerical Partial Differential Equations: Finite Difference Methods, Springer, 2010
[8] Sandro Salsa: Partial Differential Equations in Action, from Modelling to Theory, Springer 2008

