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Ordinary Differential Equation

A smooth function y(t) governed by y ′(t) = f (t, y(t)), t ∈ [0,T ]

f (t, y(t)) is continuous and satisfies Lipschitz condition wrt y ,

y(t) has a unique solution for 0 ≤ t ≤ T , given initial value
y(0) = y0.

Numerical solutions, generate approximation ui of y(ti ) over a
sequence of time steps, ti , i = 0, · · · ,N with u0 = y0.
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Ordinary Differential Equation

Explicit Methods

Euler’s method:

ui+1 = ui + hϕ(ti , ui ), h = ti+1 − ti

, one step method, global relative error O(h).

Runge-Kutta methods: high order accurate 1-step methods, multiple
evaluations of f (ti +∆t, ui + k) for some ∆t ∈ [0, h] and some shock
amount k, infeasible in practice when f (t, y(t)) is availabe only on
exact grid points ti .
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Ordinary Differential Equation

Explicit Methods (continued)

Multiple step methods:

ui+1 = αmui + αm−1ui−1 + · · ·+
h [βmf (ti , ui ) + βm−1(ti−1, ui−i ) + · · ·+ β0f (ti−m, ui−m)]

Examples: Adams-Bashforth methods, Adams-Moulton methods.

f (t, y(t)) is evaluated exactly on grid points and computed only once
at each ti .

Stability issue when h is not fine enough.

Excellent choice for smooth problems.

(Copyright©Mathwrist LLC 2023) Mathwrist Presentation Series September 28, 2023 4 / 23



Ordinary Differential Equation

Classic Iterative Deferred Correction (IDeC)

Consider using a base ODE method to obtain d-th order accurate
approximation u(d)(ti ) of y(ti ).

Construct a smooth interpolation function L(t) passing through p + 1

number of points (u
(d)
i−p, · · · , u

(d)
i ).

The error function e(t) = y(t)− L(t) then satisfies the ODE

e ′(t) = f (t, y(t))− L′(t)

We again solve e(t) using Euler’s method

ei = ei−1 + h
[
f (ti−1, u

(d)
i−1 + ei−1)− L′(ti−1)

]
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Ordinary Differential Equation

Classic IDeC (continued)

Adding ei to u
(d)
i and obtain O(hd+1) accurate u

(d+1)
i = ei + u

(d)
i

Repeat q number error correction iterations to raise the accuracy
order to O(hd+q).

Mathwrist NPL uses Lagrange interpolation polynomial L(t) and
restricts 3 < p < 7.

The number of IDeC iterations q < p. Extra iterations no longer
increase accuracy.

Mathwrist NPL uses Euler’s method or Adams-Bashforth 3-step
method as the base method.
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Ordinary Differential Equation

Spectral IDec Method

Rewrite ODE initial value problem in an integral equation form,

y(t) = y0 +

∫ t

0
f (s, y(s))ds

Obtain d-th order accurate approximation u(d)(t) from a base
method.

Define a residual function:

ϵ(t) = y0 +

∫ t

0
f (s, u(d)(s))ds − u(d)(t)
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Ordinary Differential Equation

Spectral IDec Method (continued)

Error function e(t) = y(t)− u(d) then can be expressed as a Picard
integral equation

e(t) =

∫ t

0
g(s, e(s))ds + ϵ(t)

g(t, e(t)) = f (t, u(d)(t) + e(t))− f (t, u(d)(t))

Solve e(t) i.e. from explicit Euler’s method as

ei = ei−1 + g(ti−1, ei−1)∆ti + ϵi − ϵi−1

, where ϵi is computed from Gaussian quadrature.

Mathwrist NPL uses a Legendre polynomial of degree p to compute
the quadrature, which has 2p − 2 order accuracy on ϵ(t).
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Ordinary Differential Equation

Implicit IDec Method

Explicit ODE methods need use small enough step size h to retain
numerical stability.

For stiff problems, h could be extremely small.

A n-dimensional system of ODE is linear if

y ′(t) = A(t)y(t) + s(t)

, where A(t) is a n × n matrix. If the source function s(t) = 0, the
system is homogeneous.

The system is stable if all eigen values of A(t) are negative.
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Ordinary Differential Equation

Implicit IDec Method (continued)

Using implicit Euler’s method as the base method i.e. in a classic
IDeC,

yi+1 = yi + h [Ai+1yi+1 + si+1]

This is to solve a linear system

[I− hAi+1] yi+1 = yi + hsi+1

Since all eigen values of A(t) are negative, the implicit Euler is
unconditionally stable, hence renders relatively large step size h.

Mathwrist NPL offers implicit Euler’s method combined with classic
IDeC or spectral IDeC.
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Parabolic Partial Differential Equation

A 2-d smooth function v(t, x) in a rectangle area
(t, x) ∈ (a, b)× (0,T ) governed by parabolic PDE,

∂v

∂t
= f (t, x)

∂2v

∂x2
+ g(t, x)

∂v

∂x
+ h(t, x)v + s(t, x) (1)

Conveniently, introduce spatial derivative operator A(v) and express
the PDE in an ODE form,

∂v

∂t
= A(v) + s(t, x) (2)

The PDE is linear because coefficient functions f (t, x), g(t, x) and
h(t, x) do NOT dependent on v(t, x).

It is homogeneous when the source function s(t, x) = 0.

For a well-posed problem, f (t, x) > 0.
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Parabolic Partial Differential Equation

Initial Value and Boundary Condition

Given initial value v(0, x) = u(x), PDE (1) has a unique solution
subject to appropriate boundary conditions:

1 Dirichlet:
v(t, xb) = ubc(t)

2 Neumann:
∂v

∂x
(t, xb) = ubc(t)

3 Robin: a linear combination of Dirichlet and Neumann.

αv(t, xb) + β
∂v

∂x
(t, xb) = ubc(t)

, where xb is the boundary state a or b for some given function ubc(t).

Other boundary conditions lead to no solution.
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Parabolic Partial Differential Equation

Finite Difference Method

Consider a mesh {tl , l = 0, · · · ,N} × {xj , j = 0, · · · , J} that is
uniformly discretized in the spatial dimension,

Denote function values at (tl , xj) with subscript (l , j), e.g.
fl ,j = f (tl , xj),

Approximate ∂v
∂t ,

∂v
∂x and ∂2v

∂x2
by finite difference,

At mesh grid points, PDE (1) becomes to a difference equation in
terms of nodal values vl ,j that approximates v(tl , xj).

Numerical solution is obtained by sloving all nodal values vl ,j
simultaneously to satisfy the difference equation.
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Parabolic Partial Differential Equation

Crank-Nicolson Method

Crank-Nicolson uses 3-point center-difference scheme in spatial
dimension,

∂v

∂x

∣∣∣∣
t=tl ,x=xj

=
vl ,j+1 − vl ,j−1

2∆x

∂2

∂x2

∣∣∣∣
t=tl ,x=xj

=
vl ,j+1 − 2vl ,j + vl ,j−1

∆x2

Along time dimension,

∂v

∂t

∣∣∣∣
t=tl ,x=xj

=
vl+1,j − vl ,j

∆t
=

1

2
(wl+1,j + sl+1,j) +

1

2
(wl ,j + sl ,j)

wl ,j = fl ,j
∂2

∂x2

∣∣∣∣
t=tl ,x=xj

+ gl ,j
∂v

∂x

∣∣∣∣
t=tl ,x=xj

+ hl ,j
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Parabolic Partial Differential Equation

Crank-Nicolson (continued)

PDE (1) becomes to

vl+1,j

∆t
− 1

2
Ll+1,j =

vl ,j
∆t

+
1

2
Ll ,j +

1

2
[sl+1,j + sl ,j ]

Ll ,j = fl ,j
vl ,j+1 − 2vl ,j + vl ,j−1

∆x2
+ gl ,j

vl ,j+1 − vl ,j−1

2∆x
+ hl ,jvl ,j

At boundary states x0 and xJ , spatial derivatives involve “ghost”
point x−1 and xJ+1, imply nodal values at ghost points from
boundary conditions, i.e. for Robin boundary condition,

vl ,−1 =
2α1∆x

β1
vl ,0 + vl ,1 −

2∆x

β1
u1(tl)
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Parabolic Partial Differential Equation

Crank-Nicolson (continued)

Solve a (J + 1)× (J + 1) tridiagonal linear system at each time
marching step.

Bl+1vl+1 = Alvl + s

Second order accuracy O(h2) and O(∆x2) in both time and states.

Unconditionally stable.

Handle non-smooth (even non-differentiable) initial value function
v(0, x) = u(x).

To improve accuracy, Mathwrist NPL allows users to set an initial
smoothing time 0 < s < T . We internally will start with a 4-th order
accurate finite difference method to smooth v(t, x) out to time s and
then switch back to Crank-Nicolson method.
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Parabolic Partial Differential Equation

Spectral Collocation Method

Approximate v(t, x) by a degree-n approximation polynomial u(t, x)
in terms of orthogonal basis polynomials (Mathwrist NPL uses
Chebyshev basis polynomials),

u(t, x) =
n∑

k=0

ak(t)Tk(x), k = 0, · · · , n

Tk(x) = cos
(
k cos−1 x

)
We then require

∂

∂t
u

∣∣∣∣
x=xj

= A(u) + s(t, xj) (3)

, at some representative node points xj ∈ [a, b], known as collocation
points.
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Parabolic Partial Differential Equation

Spectral Collocation Method (continued)

For Chebyshev basis polynomials, xj are choosen to be the extreme

points of Tn(x), xj = cos πj
n , j = 0, · · · , n.

Collocation equation (3) then is n-dimensional system of linear ODE.

Mathwrist NPL solves this ODE system using implicit spectral IDeC
method.

When v(t, x) is a very smooth function in states, spectral collocation
method outperforms all other methods. It doesn’t work well if not so.

It doesn’t work for non-smooth or non-differentiable initial value
functions.

However, we allow users to set an initial smoothing time 0 < s < T
and use a 4-th order accurate finite difference method to smooth
v(t, x) to s.
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Parabolic Partial Differential Equation

Method of Lines

Method of lines refer to the technique of solving PDE (1) by solving a
system of ODE (3).

Spectral collocation method falls into this category.

Alternatively, we can approximate A(u) using finite difference.

Mathwrist NPL provides a 2nd order and a 4th order accurate finite
difference method, and then solve (3) by implicit classic IDeC.

The 2nd order finite difference scheme is exactly same as
Crank-Nicolson.
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Parabolic Partial Differential Equation

Method of Lines (continued)

The 4th order finite difference scheme uses 5-point center difference
at interior nodes, xj , j = 2, · · · , J − 2.

At near-boundary nodes, x1 and xJ−1, alternative high order finite
difference formula is used.
Boundary nodes x0 and xJ are governed by boundary conditions.
Only interior nodes x1, · · · , xJ−1 are solved from the ODE by implicit
IDeC.
At each step, we solve a banded diagonal linear system of bandwidth 5.

When required, we use this 4th order accurate method of lines to
smooth out initial values for all other PDE solvers.
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Parabolic Partial Differential Equation

Events and Resets

Apart from the initial smoothing time, Mathwrist PDE solvers also
support events and resets.

Users can specify a list of events. We ensure PDE marching steps will
stop at those events.

Users can instruct a solver that v(t, x) needs be reset at each time
marching step. We ensure v(t, x) is updated by calling user supplied
callback function.

Our API function is designed not only to take initial values, but also
serve as callbacks at events and resets.

Updated v(t, x) then becomes the new initial value to continue the
process.
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